Automotive safety: ActivityView enabled split-screen

Author(s):  
Nemanja Lazic ◽  
Milica Ponos ◽  
Milan Bjelica ◽  
Tihomir Andjelic ◽  
Jasmina Pesic
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 2942
Author(s):  
Alessandro Leone ◽  
Andrea Caroppo ◽  
Andrea Manni ◽  
Pietro Siciliano

Drivers’ road rage is among the main causes of road accidents. Each year, it contributes to more deaths and injuries globally. In this context, it is important to implement systems that can supervise drivers by monitoring their level of concentration during the entire driving process. In this paper, a module for Advanced Driver Assistance System is used to minimise the accidents caused by road rage, alerting the driver when a predetermined level of rage is reached, thus increasing the transportation safety. To create a system that is independent of both the orientation of the driver’s face and the lighting conditions of the cabin, the proposed algorithmic pipeline integrates face detection and facial expression classification algorithms capable of handling such non-ideal situations. Moreover, road rage of the driver is estimated through a decision-making strategy based on the temporal consistency of facial expressions classified as “anger” and “disgust”. Several experiments were executed to assess the performance on both a real context and three standard benchmark datasets, two of which containing non-frontal-view facial expression and one which includes facial expression recorded from participants during driving. Results obtained show that the proposed module is competent for road rage estimation through facial expression recognition on the condition of multi-pose and changing in lighting conditions, with the recognition rates that achieve state-of-art results on the selected datasets.


Author(s):  
Zhizhong Wang ◽  
Liangyao Yu ◽  
Ning Pan ◽  
Lei Zhang ◽  
Jian Song

The Distributed Electro-hydraulic Braking system (DEHB) is a wet type brake-by-wire system. As a safety critical automotive electrical and/or electronic (E/E) system, DEHB shall be designed under the guideline of ISO 26262 in order to avoid unreasonable risk due to the malfunctions in the item. This paper explores how the Automotive Safety Integrity Level (ASIL) decomposition in the concept phase is influenced by the system architectures of DEHB. Based on a typical hazardous event, analysis on DEHB with the same system architecture as the Electro-mechanical Braking system (EMB) is carried out, which is taken as the basis for comparison. Two types of DEHB with different system architectures are then analyzed. Results show that the adoption of hydraulic backup enables ASIL decomposition in the pedal unit. The adoption of both hydraulic backup and normally open balance valves offers the opportunity to perform ASIL decomposition in the brake actuator system of DEHB.


2018 ◽  
Vol 44 (2) ◽  
pp. 43-52
Author(s):  
Satoru Furugori ◽  
Takeo Kato ◽  
Yoshiyuki Matsuoka

1970 ◽  
Author(s):  
Harry F. Barr
Keyword(s):  

PEDIATRICS ◽  
1977 ◽  
Vol 60 (5) ◽  
pp. 790-790
Author(s):  
David E. Knoop

Concerning the three articles and commentary regarding automotive safety (Pediatrics 58:307, 316, 320, 323, September 1976), I will take this opportunity to remind my colleagues that a sign is available (ABC Manufacturing, Raleigh, MS 39153) that can be posted in the parking lot of physicians and that may be useful in reinforcing the in-office education given by the physician. It reads "Fasten Children's Seat Belts." It is baked enamel on steel, 30 x 45 cm (12 x 18 inches), suitable for outdoor use.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000077-000081
Author(s):  
Sebastian Brunner ◽  
Manfred Stadler ◽  
Xin Wang ◽  
Frank Bauer ◽  
Klaus Aichholzer

In this paper we will present an application of advanced Low Temperature Cofired Ceramic (LTCC) technology beyond 60 GHz. Therefore a RF frontend for 76–81 GHz radar frequency was built. LTCC is a well established technology for applications for consumer handheld units <5 GHz but will provide solutions for applications for high frequencies in the range of 60 GHz and beyond. Radar sensors operating in the 76-81 GHz range are considered key for Advanced Driver Assistance Systems (ADAS) like Adaptive Cruise Control (ACC), Collision Mitigation and Avoidance Systems (CMS) or Lane Change Assist (LCA). These applications are the next wave in automotive safety systems and have thus generated increased interest in lower-cost solutions especially for the mm-wave frontend section.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000104-000109
Author(s):  
Mollie Benson ◽  
Burton Carpenter ◽  
Andrew Mawer

Abstract Radar is currently employed in automotive applications to provide the range, angle, and velocity of objects using RF waves (77GHz). This paper outlines solder joint reliability of a specific micro-processor that processes data received from a SRR (short range radar operating from 0.2 to 30 meters). It is a powerful digital signal processing accelerator, which targets safety applications that require a high Automotive Safety Integrity Level (ASIL-B). The paper explores the package design and construction, SMT (surface mount technology) assembly, and board level reliability testing of various BGA pad surface finish and solder ball alloy materials on a 0.65 mm pitch, 10 × 10 mm body 141 MAPBGA (mold array process-ball grid array) package. The package configurations include two BGA pad surface finishes (Ni/Au and OSP [organic solderability protectant]) and three solder alloys (SnAg, SAC405, and SAC-Bi [a Bi containing SAC derivative]). Solder joint reliability analysis was performed through AATS (air-to-air thermal shock) between 40°C and +125°C and JEDEC Drop Testing at 1500G's. Thermal shock was extended until at least 75% of the populations failed, which was well past the points needed to qualify the packages for the intended end-use applications. The evaluations of the micro-processor indicate that the MAPBGA package can meet the ASIL-B specification requirements with optimized combinations of BGA pad surface finish and solder alloy. The focus of this paper was to determine the baseline solder-joint thermal shock and JEDEC drop performance with varied BGA pad surface finish and solder ball alloy materials.


Sign in / Sign up

Export Citation Format

Share Document