Receiver angle control in an infrastructure-to-car visible light communication link

Author(s):  
Jiseong Jeong ◽  
Chung Ghiu Lee ◽  
Inkyu Moon ◽  
Moonsoo Kang ◽  
Seokjoo Shin ◽  
...  
2015 ◽  
Vol 23 (26) ◽  
pp. 33656 ◽  
Author(s):  
José Ramón Durán Retamal ◽  
Hassan Makine Oubei ◽  
Bilal Janjua ◽  
Yu-Chieh Chi ◽  
Huai-Yung Wang ◽  
...  

2014 ◽  
Vol 685 ◽  
pp. 306-309
Author(s):  
Hao Wang ◽  
Ze Yu Han

Visible light communication technology is a emerging wireless and optical communication technology developed after invention and application of white LED.In this paper, we have a research based on indoor visible light communication system of lighting white LED,discuss of the visible light communication channel characteristics,detailedly analysis of the indoor visible light communication link. This paper focuses on the modulation and demodulation method applied to visible light communication. In the past visible light communication is mainly used off keying modulation,however, the data transfer speed is limited due to the influence of ISI .This paper presents a solution based on OFDM modulation and demodulation, to reduce the impact brought from inter-symbol string under high data transfer speed.Based on data analysis and computer simulation,the program presented in this paper can be used as indoor lighting and high-speed data transmission.Finally, give scheme to achieve visible light communication modulation and demodulation,provide a theoretical basis for further experiments.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 826
Author(s):  
MD Rashed Rahman ◽  
Kehinde Adedara ◽  
Ashwin Ashok

The directionality of optical signals provides an opportunity for efficient space reuse of optical links in visible light communication (VLC). Space reuse in VLC can enable multiple-access communication from multiple light emitting transmitters. Traditional VLC system design using photo-receptors requires at least one receiving photodetector element for each light emitter, thus constraining VLC to always require a light-emitter to light-receptor element pair. In this paper, we propose, design and evaluate a novel architecture for VLC that can enable multiple-access reception using a photoreceptor receiver that uses only a single photodiode. The novel design includes a liquid-crystal-display (LCD) based shutter system that can be automated to control and enable selective reception of light beams from multiple transmitters. We evaluate the feasibility of multiple access on a single photodiode from two light emitting diode (LED) transmitters and the performance of the communication link using bit-error-rate (BER) and packet-error-rate (PER) metrics. Our experiment and trace based evaluation through proof-of-concept implementation reveals the feasibility of multiple LED reception on a single photodiode. We further evaluate the system in controlled mobile settings to verify the adaptability of the receiver when the LED transmitter changes position.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Yu-Feng Yang ◽  
Kang-Kang Chang ◽  
Ying Ci

This paper mainly studies the communication performance of visible light communication link in fire smoke environment. Compared with the previous studies, this study no longer only considers a single wavelength and considers the influence of smoke and background light noise. Firstly, the variation of background light noise caused by sunlight during a day was analyzed, then signal-to-noise ratio (SNR) and bit error rate (BER) of the visible light communication link in fire smoke environment with different visibility were calculated, and finally, the variation of received power with the angle β between the LED optical axis and the communication link (from LED to receiver) was analyzed. The results show that, during a day from 07:00 to 18:30, background light noise first increases and then decreases, BER changes in the same trend and reaches the maximum at about 13:00, while SNR changes in the opposite trend and reaches the minimum at about 13:00. When visibility is 100 m, the maximum difference of SNR between 7:00 and 13:00 is about 19 dB, and the maximum difference of BER is about 5.3E-10. At 7:00, the maximum difference of SNR is about 13 dB between the visibility of 1 m and the visibility of 100 m, and the maximum difference of BER is about 1.44E − 11, and received power decreases with the increase of β. In addition, SNR increases with visibility of fire smoke environment, and BER changes in the opposite trend. Lastly, in order to enhance the performance of visible light communication in fire smoke environment, this paper gives the transmitting power scheme.


2020 ◽  
Author(s):  
Pablo Játiva ◽  
Cesar Azurdia ◽  
Fabian Seguel ◽  
Ismael Soto ◽  
Carlos Gutiérrez

Sign in / Sign up

Export Citation Format

Share Document