Electric Field Stress Optimization of Permittivity Graded Spacer in UHVAC Gas Insulated System

Author(s):  
Jacob P Varghese ◽  
Avinash Nelson Asokan ◽  
Subham Khatua ◽  
P Preetha ◽  
R Sunitha
Author(s):  
Janaki Pakalapati ◽  
Venkata N. Kumar Gundavarapu ◽  
Deepak Chowdary Duvvada ◽  
Sravana Kumar Bali

AbstractNow days, the establishment of spacers is in wide usage in three-phase Gas Insulated Busduct (GIB) for providing mechanical support and better insulation to the conductors. The region of the intersection of SF6 gas, enclosure end and the spacer is one of the weakest links in GIB, so the major concentration is done on minimization of electric field stress at this junction by using Functionally Graded Material (FGM) technique. The other incidents of insulation failures are due to several defects like depression, delamination etc. reduces the dielectric strength of the spacers. In this paper, an FGM post type spacer has been designed for a three-phase GIB under depression and further electric field stress at Triple Junction (TJ) is reduced by introducing a metal insert (MI) nearer to the TJ. Several filler materials are used as doping materials for obtaining different permittivity values using FGM technique to achieve uniform electric field stress. Simulation is carried out for the designed spacer at various operating voltages with different types of FGM gradings. The effect of depression with different dimensions and positions is analyzed before and after inserting MI to the FGM post type spacer in three-phase GIB.


2020 ◽  
Vol 28 (4) ◽  
pp. 880-891
Author(s):  
Bartlomiej Szafraniak ◽  
Lukasz Fusnik ◽  
Michal Bonk ◽  
Dariusz Smugala

1991 ◽  
Vol 58 (5) ◽  
pp. 490-492 ◽  
Author(s):  
Dominique Vuillaume ◽  
Didier Goguenheim ◽  
Jacques C. Bourgoin
Keyword(s):  

2014 ◽  
Vol 1025-1026 ◽  
pp. 803-808
Author(s):  
Sackthavy Chandavong ◽  
Kittipong Tonmitr ◽  
Arkom Kaewrawang

This paper presents the comparison of water droplets on insulating surface under alternating current (AC) and direct current (DC) electric field. Besides that, it is demonstrated about the insulator deterioration under both electric field stressed due to an ageing and partial discharge (PD) phenomenon. The vital parameters factors are water droplets conductivity, droplet volume, surface roughness and droplet positioning that they cause to occur the electric field intensification. The field is intensified at the interface between the droplet, air and insulating material. Thus, the PD occurred due to electric field intensification increases with the deformed droplet. The deformation of water droplet under AC electric field stress is more intense than DC field. The electrostatic forces change the droplet shapes and spread them along the electric field direction. The local electric field intensification provokes the PD giving way to reduction of hydrophobicity of insulator surfaces. In addition, the PD activity could appear as a trigger for a surface breakdown. And the localized arcs cause damage to insulating material then finally leads to deterioration of insulation materials and the pollutant contamination.


Sign in / Sign up

Export Citation Format

Share Document