A General Approach to Fixed-time Synchronization Problem for Fractional-order Multi-dimension-valued Fuzzy Neural Networks Based on Memristor

Author(s):  
Jianying Xiao ◽  
Jun Cheng ◽  
Kaibo Shi ◽  
Ruimei Zhang
2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Bing Li ◽  
Qiankun Song

The synchronization problem of chaotic fuzzy cellular neural networks with mixed delays is investigated. By an impulsive integrodifferential inequality and the Itô's formula, some sufficient criteria to synchronize the networks under both impulsive and stochastic perturbations are obtained. The example and simulations are given to demonstrate the efficiency and advantages of the proposed results.


2022 ◽  
Vol 6 (1) ◽  
pp. 36
Author(s):  
Pratap Anbalagan ◽  
Raja Ramachandran ◽  
Jehad Alzabut ◽  
Evren Hincal ◽  
Michal Niezabitowski

This research paper deals with the passivity and synchronization problem of fractional-order memristor-based competitive neural networks (FOMBCNNs) for the first time. Since the FOMBCNNs’ parameters are state-dependent, FOMBCNNs may exhibit unexpected parameter mismatch when different initial conditions are chosen. Therefore, the conventional robust control scheme cannot guarantee the synchronization of FOMBCNNs. Under the framework of the Filippov solution, the drive and response FOMBCNNs are first transformed into systems with interval parameters. Then, the new sufficient criteria are obtained by linear matrix inequalities (LMIs) to ensure the passivity in finite-time criteria for FOMBCNNs with mismatched switching jumps. Further, a feedback control law is designed to ensure the finite-time synchronization of FOMBCNNs. Finally, three numerical cases are given to illustrate the usefulness of our passivity and synchronization results.


2021 ◽  
Author(s):  
Shiju Yang ◽  
Chuandong Li ◽  
Yu Li ◽  
Ting Yang ◽  
Bo Li

Abstract In this paper, the fixed-time bipartite synchronization problem for coupled delayed neural networks with signed graphs is discussed. Different from traditional neural networks, the interactions between nodes of delayed neural networks can be either collaborative or antagonistic. Furthermore, compared with the initial-condition based finite-time synchronization, the settling time is bounded by a constant within fixedtime regardless of the initial condition. It is worth noting that the fixed-time stable network for bipartite synchronization in this paper achieves more faster convergence than most existing publications. By applying constructing comparison system method, Lyapunov stability theory and inequality techniques, some sufficient criteria for fixed-time bipartite synchronization are obtained. Finally, two numerical examples are granted to display the performance of the obtained results.


Sign in / Sign up

Export Citation Format

Share Document