Estimating High-Resolution Atmospheric Phase Screens From Radar Interferometry Data

2011 ◽  
Vol 49 (6) ◽  
pp. 3117-3128 ◽  
Author(s):  
Dochul Yang ◽  
Sean M. Buckley

Radar interferometry (InSAR) deformation measurements are afflicted by artifacts associated with the atmosphere and errors in removing the topographic phase contribution. We present a new time series algorithm that eliminates high-spatial-frequency atmospheric effects (bubbles) not removed with existing advanced InSAR approaches applied to measurements of smoothly varying deformation through time. Our High-Resolution Atmospheric Phase Screen (APS) (HiRAPS) algorithm initially uses a connected set of short-period interferograms, each spanning no more than three satellite-orbit repeat cycles. We estimate height error differences between a pixel and its neighbors within a radius chosen to be significantly smaller than a bubble. The height errors are unwrapped and removed from those pixels with high values of a newly defined multi-interferogram phase correlation. We then create a deformation time series for the pixels using singular value decomposition. The high-resolution APS are estimated from a dense set of pixels using spatiotemporal filtering. We evaluate the HiRAPS algorithm on simulated data consisting of realistic time-linear and nonlinear deformation, height errors, and bubbles. The root mean square error between all simulated and estimated APS pixels is 0.26 rad with the HiRAPS algorithm and 0.39 rad with a persistent scatterer (PS) algorithm. We also apply the HiRAPS algorithm to 66 Radarsat-1 images of Phoenix, AZ. Our HiRAPS approach results in an 18-fold increase in APS pixel density over PS processing. After removing the HiRAPS and PS APS from PS interferograms, we find that HiRAPS provides an 18% increase in the number of final PS detected.

2021 ◽  
Vol 13 (11) ◽  
pp. 2174
Author(s):  
Lijian Shi ◽  
Sen Liu ◽  
Yingni Shi ◽  
Xue Ao ◽  
Bin Zou ◽  
...  

Polar sea ice affects atmospheric and ocean circulation and plays an important role in global climate change. Long time series sea ice concentrations (SIC) are an important parameter for climate research. This study presents an SIC retrieval algorithm based on brightness temperature (Tb) data from the FY3C Microwave Radiation Imager (MWRI) over the polar region. With the Tb data of Special Sensor Microwave Imager/Sounder (SSMIS) as a reference, monthly calibration models were established based on time–space matching and linear regression. After calibration, the correlation between the Tb of F17/SSMIS and FY3C/MWRI at different channels was improved. Then, SIC products over the Arctic and Antarctic in 2016–2019 were retrieved with the NASA team (NT) method. Atmospheric effects were reduced using two weather filters and a sea ice mask. A minimum ice concentration array used in the procedure reduced the land-to-ocean spillover effect. Compared with the SIC product of National Snow and Ice Data Center (NSIDC), the average relative difference of sea ice extent of the Arctic and Antarctic was found to be acceptable, with values of −0.27 ± 1.85 and 0.53 ± 1.50, respectively. To decrease the SIC error with fixed tie points (FTPs), the SIC was retrieved by the NT method with dynamic tie points (DTPs) based on the original Tb of FY3C/MWRI. The different SIC products were evaluated with ship observation data, synthetic aperture radar (SAR) sea ice cover products, and the Round Robin Data Package (RRDP). In comparison with the ship observation data, the SIC bias of FY3C with DTP is 4% and is much better than that of FY3C with FTP (9%). Evaluation results with SAR SIC data and closed ice data from RRDP show a similar trend between FY3C SIC with FTPs and FY3C SIC with DTPs. Using DTPs to present the Tb seasonal change of different types of sea ice improved the SIC accuracy, especially for the sea ice melting season. This study lays a foundation for the release of long time series operational SIC products with Chinese FY3 series satellites.


Sign in / Sign up

Export Citation Format

Share Document