Accurate Calculations of Emissivities of Polar Ocean Surfaces Between 0.5 and 2 GHz Using an NIBC/Nystrom/SMCG Method

2020 ◽  
Vol 58 (4) ◽  
pp. 2732-2744 ◽  
Author(s):  
Yanlei Du ◽  
Leung Tsang
Keyword(s):  
1967 ◽  
Vol 15 (1-2) ◽  
pp. 1-23 ◽  
Author(s):  
E. Vowinckel ◽  
Swenn Orvig
Keyword(s):  

2021 ◽  
Author(s):  
Taimoor Sohail ◽  
Jan Zika ◽  
Damien Irving ◽  
John Church

<p>Warming-induced global water cycle changes pose a significant threat to biodiversity and humanity.  The atmosphere transports freshwater from the sub-tropical ocean to the tropics and poles in two distinct branches. The resulting air-sea fluxes of fresh water and river run-off imprint on ocean salinity (S) at different temperatures (T), creating a characteristic `T-S curve' of mean salinity as a function of temperature. Using a novel tracer-percentile framework, we quantify changes in the observed T-S curve from 1970 to 2014.  The warming ocean has been characterised by freshening tropical and sub-polar oceans and salinifying sub-tropical oceans. Over the 44 year period investigated, a net poleward freshwater transport out of the sub-tropical ocean is quantified, implying an amplification of the net poleward atmospheric freshwater transport. Historical reconstructions from the 6th Climate Model Intercomparison Project (CMIP6) exhibit a different response, underestimating the peak salinification of the ocean by a factor of 4, and showing a weak freshwater transport <em>into</em> the sub-polar ocean. Results indicate this discrepancy between the observations and models may be attributed to consistently biased representations of evaporation and precipitation patterns, which lead to the the weaker amplification seen in CMIP6 models.</p>


2012 ◽  
Vol 8 (5) ◽  
pp. 1435-1445 ◽  
Author(s):  
J. Etourneau ◽  
C. Ehlert ◽  
M. Frank ◽  
P. Martinez ◽  
R. Schneider

Abstract. The global Late Pliocene/Early Pleistocene cooling (~3.0–2.0 million years ago – Ma) concurred with extremely high diatom and biogenic opal production in most of the major coastal upwelling regions. This phenomenon was particularly pronounced in the Benguela upwelling system (BUS), off Namibia, where it is known as the Matuyama Diatom Maximum (MDM). Our study focuses on a new diatom silicon isotope (δ30Si) record covering the MDM in the BUS. Unexpectedly, the variations in δ30Si signal follow biogenic opal content, whereby the highest δ30Si values correspond to the highest biogenic opal content. We interpret the higher δ30Si values during the MDM as a result of a stronger degree of silicate utilisation in the surface waters caused by high productivity of mat-forming diatom species. This was most likely promoted by weak upwelling intensity dominating the BUS during the Late Pliocene/Early Pleistocene cooling combined with a large silicate supply derived from a strong Southern Ocean nutrient leakage responding to the expansion of Antarctic ice cover and the resulting stratification of the polar ocean 3.0–2.7 Ma ago. A similar scenario is hypothesized for other major coastal upwelling systems (e.g. off California) during this time interval, suggesting that the efficiency of the biological carbon pump was probably sufficiently enhanced in these regions during the MDM to have significantly increased the transport of atmospheric CO2 to the deep ocean. In addition, the coeval extension of the area of surface water stratification in both the Southern Ocean and the North Pacific, which decreased CO2 release to the atmosphere, led to further enhanced atmospheric CO2 drawn-down and thus contributed significantly to Late Pliocene/Early Pleistocene cooling.


1969 ◽  
Vol 17 (2-3) ◽  
pp. 121-146 ◽  
Author(s):  
E. Vowinckel ◽  
Svenn Orvig
Keyword(s):  

2019 ◽  
Vol 53 (11) ◽  
pp. 7113-7130
Author(s):  
Takahiro Toyoda ◽  
Katsushi Iwamoto ◽  
L. Shogo Urakawa ◽  
Hiroyuki Tsujino ◽  
Hideyuki Nakano ◽  
...  

Abstract The presence of thin sea ice is indicative of active freezing conditions in the polar ocean. We propose a simple yet effective method to incorporate information of thin-ice category into coupled ocean–sea-ice model simulations. In our approach, the thin-ice distribution restricts thick-ice extent and constrains atmosphere–ocean heat exchange through the sea ice. Our model simulation with the incorporation of satellite-derived thin-ice data for the Arctic Ocean showed much improved representation of sea-ice and upper-ocean fields, including sea-ice thickness in the Canadian Archipelago and the region north of Greenland, mixed-layer depth over the Central Arctic, and surface-layer salinity over the open ocean. Enhanced sea-ice production by the thin-ice data constraint increased the total sea-ice volume of the Arctic Ocean by $$5 \times 10^{3}$$ 5 × 10 3 –$$10 \times 10^{3}$$ 10 × 10 3  km3. Subsequent sea-ice melting was also enhanced, leading to the greater amplitude of the seasonal cycle by approximately $$2 \times 10^{3}$$ 2 × 10 3  km3 (15% of the baseline value from the experiment without the thin-ice data incorporation). Overall, our results demonstrate that the incorporation of satellite-derived information on thin sea ice has great potential for the improvement of coupled ocean–sea-ice simulations.


2019 ◽  
Vol 149 ◽  
pp. 110659
Author(s):  
Christian Schlosser ◽  
Dieter Garbe-Schönberg
Keyword(s):  

2015 ◽  
Vol 9 (8) ◽  
pp. 1835-1845 ◽  
Author(s):  
Dan Nguyen ◽  
Roxane Maranger ◽  
Vanessa Balagué ◽  
Montserrat Coll-Lladó ◽  
Connie Lovejoy ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document