biogenic opal
Recently Published Documents


TOTAL DOCUMENTS

71
(FIVE YEARS 4)

H-INDEX

26
(FIVE YEARS 0)

2020 ◽  
Author(s):  
Shahab Varkouhi ◽  
Jonathan Wells

Abstract. This study calculated the dissolution rates of biogenic silica deposited on the seafloor and the silicic acid benthic flux for 22 Ocean Drilling Program sites. Simple models developed for two host sediment types – detrital and carbonate – were used to explain the variability of biogenic opal dissolution and recycling under present-day low (−0.3 to 2.14 °C) bottom-water temperatures. The kinetic constants describing silicic acid release and silica saturation concentration increased systematically with increasing bottom-water temperatures. When these temperature effects were incorporated into the diagenetic models, the prediction of dissolution rates and diffusive fluxes was more robust. This demonstrates that temperature acts as a primary control that decreases the relative degree of pore-water saturation with opal while increasing the silica concentration. The correlation between the dissolution rate and benthic flux with temperature was pronounced at sites where biogenic opal is accommodated in surficial sediments mostly comprised of biogenic carbonates. This is because the dissolution of carbonates provides the alkalinity necessary for both silica dissolution and clay formation; thus strongly reducing the retarding influence of clays on opal dissolution. Conversely, the silica exchange rates were modified by presence of aluminosilicates, which led to a higher burial efficiency for opal in detrital- than in carbonate-dominated benthic layers. Though model prediction of first-order silica early transformation suggests likely effects from surface temperatures (0–4 °C) on opal-CT precipitation over short geological times (


2018 ◽  
Author(s):  
Jan-Lukas Menzel Barraqueta ◽  
Christian Schlosser ◽  
Hélène Planquette ◽  
Arthur Gourain ◽  
Marie Cheize ◽  
...  

Abstract. The distribution of dissolved aluminium (dAl) in the water column of the North Atlantic and Labrador Sea was studied along GEOTRACES section GA01 to unravel the sources and sinks of this element. Surface water dAl concentrations were low (median of 2.5 nM) due to low aerosol deposition and removal by phytoplankton. However, surface water dAl concentrations were enhanced on the Iberian and Greenland shelves (up to 30.9 nM) due to continental inputs (rivers, glacial flour and ice melt). A negative correlation was observed between dAl in surface waters and primary production, phytoplankton community structure and biogenic opal production. The abundance of diatoms exerted a significant (p  0.76) west of the Iberian Basin, suggesting net release of dAl at depth during remineralization of sinking biogenic opal containing particles. Enrichment of dAl at near-bottom depths was observed due to resuspension of sediments near the sediment-water interface. The highest dAl (up to 38.7 nM) concentrations were observed in Mediterranean Overflow Waters which act as a major source of dAl to mid depth waters of the eastern North Atlantic. This study clearly shows that the vertical and lateral distribution of dAl in the North Atlantic differs when compared to other regions of the North Atlantic and global ocean due to the large spatial differences both in the main source of Al, atmospheric deposition, and the main sink for Al, particle scavenging, between different oceanic regions.


2018 ◽  
Author(s):  
Eduardo Ruiz Marin ◽  
◽  
Jason Coenen ◽  
Reed P. Scherer ◽  
Nathan D. Stansell ◽  
...  

The Holocene ◽  
2017 ◽  
Vol 28 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Boo-Keun Khim ◽  
Mi Jung Lee ◽  
Hyen Goo Cho ◽  
Kwangkyu Park

Diverse paleoceanographic proxies from three sediment cores (GC12ex, JPC35, and JPC30) collected from the Chukchi Shelf north of the Bering Strait elucidate the Holocene paleoceanographic changes (surface water productivity and sediment transport) caused by the Bering Strait throughflow from the Bering Sea into the Chukchi Sea. Lithology of three sediment cores identified the same three units. Based on comparison and correlation to adjacent age-dated cores as well as AMS 14C dates of core GC12ex, the boundary between Unit 1 and Unit 2a is dated about 8500 cal. yr BP, and the boundary between Unit 2a and Unit 2b is also dated about 4500 cal. yr BP. Consistent down-core profiles of the geochemical and isotopic properties among the three cores differentiate the paleoceanographic conditions corresponding to lithologic units. Based on the biogenic opal, total organic carbon, and δ13C values, Unit 1 is characterized by low surface water marine productivity under relatively shallow water with weak transport of Bering Strait throughflow. Unit 2a shows a mixture of terrestrial and marine contributions, indicating the onset of increased marine surface water productivity after the main flooding (~11,500 cal. yr BP) of the Bering Strait by the Holocene sea-level rise. Unit 2b exhibits stable and enhanced marine biogenic opal production similar to the present-day oceanographic conditions. Such paleoceanographic changes were confirmed by the clay minerals (smectite, illite, kaolinite, and chlorite) and detrital isotopes (εNd and 87Sr/86Sr). Thus, the Bering Strait throughflow played an important role on surface water productivity and sediment deposition in the Chukchi Shelf in response to Holocene sea-level rise after the opening of the Bering Strait.


2016 ◽  
Vol 425 ◽  
pp. 445-452 ◽  
Author(s):  
Zheng Tang ◽  
Xuefa Shi ◽  
Xu Zhang ◽  
Zhihua Chen ◽  
Min-Te Chen ◽  
...  
Keyword(s):  

2016 ◽  
Vol 191 ◽  
pp. 102-117 ◽  
Author(s):  
Claudia Ehlert ◽  
Kristin Doering ◽  
Klaus Wallmann ◽  
Florian Scholz ◽  
Stefan Sommer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document