Digital Beamforming Synthetic Aperture Radar (DBSAR): Experiments and Performance Analysis in Support of 16-Channel Airborne X-Band SAR Data

Author(s):  
Yashi Zhou ◽  
Wei Wang ◽  
Zhen Chen ◽  
Pei Wang ◽  
Huachun Zhang ◽  
...  
Author(s):  
Dario E. Solano-Rojas ◽  
Shimon Wdowinski ◽  
Enrique Cabral-Cano ◽  
Batuhan Osmanoglu ◽  
Emre Havazli ◽  
...  

Abstract. Detecting and mapping subsidence is currently supported by interferometric synthetic aperture radar (InSAR) products. However, several factors, such as band-dependent processing, noise presence, and strong subsidence limit the use of InSAR for assessing differential subsidence, which can lead to ground instability and damage to infrastructure. In this work, we propose an approach for measuring and mapping differential subsidence using InSAR products. We consider synthetic aperture radar (SAR) data availability, data coverage over time and space, and the region's subsidence rates to evaluate the need of post-processing, and only then we interpret the results. We illustrate our approach with two case-examples in Central Mexico, where we process SAR data from the Japanese ALOS (L-band), the German TerraSAR-X (X-band), the Italian COSMO-SkyMed (X-band) and the European Sentinel-1 (C-band) satellites. We find good agreement between our results on differential subsidence and field data of existing faulting and find potential to map yet-to-develop faults.


Author(s):  
J. Susaki ◽  
M. Kishimoto

In this paper, we present a method to extract urban areas from X-band fully polarimetric synthetic aperture radar (SAR) data. It is known that very high resolution (VHR) SAR can extract buildings, but it requires more processes to map urban areas that should include other objects. The proposed method is mainly composed of two classifications. One classification uses total power of scattering and volume scattering derived by using four component decomposition method with correction of the polarization orientation angle (POA) effect. The other classification uses polarimetric coherency between <i>S<sub>HH</sub></i> and <i>S<sub>VV</sub></i> . The two results are intersected and final urban areas are extracted after post-classification processing. We applied the proposed method to airborne X-band fully polarimetric SAR data of Polarimetric and Interferometric Airborne Synthetic Aperture Radar System (Pi-SAR2), developed by the National Institute of Information and Communications Technology (NICT), Japan. The validation show that the results of the proposed method were acceptable, with an overall accuracy of approximately 80 to 90% at 100-m spatial scale.


2021 ◽  
Vol 12 (6) ◽  
pp. 573-584
Author(s):  
Xinzhe Yuan ◽  
Weizeng Shao ◽  
Bing Han ◽  
Xiaochen Wang ◽  
Xiaoqing Wang ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2342
Author(s):  
Jin-Bong Sung ◽  
Sung-Yong Hong

A new method to design in-orbit synthetic aperture radar operational parameters has been implemented for the Korean Multi-purpose Satellite 6 mission. The implemented method optimizes the pulse repetition frequency when a satellite altitude changes from its nominal one, so it has the advantage that the synthetic aperture radar performances can satisfy the requirements for the in-orbit operation. Other commanding parameters have been designed to conduct trade-off between those parameters. This paper presents the new optimization method to maintain the synthetic aperture radar performances even in the case of an altitude variation. Design methodologies to determine operational parameters, respectively, at nominal altitude and in orbit are presented. In addition, numerical simulation is presented to validate the proposed optimization and the design methodologies.


1995 ◽  
Vol 33 (4) ◽  
pp. 817-828 ◽  
Author(s):  
E.R. Stofan ◽  
D.L. Evans ◽  
C. Schmullius ◽  
B. Holt ◽  
J.J. Plaut ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document