Advanced Technology to Increase the Use of Photovoltaic Energy in Copper Electrowinning

2020 ◽  
Vol 56 (2) ◽  
pp. 2117-2121
Author(s):  
Eduardo P. Wiechmann ◽  
Jonhy E. Diaz ◽  
Anibal S. Morales ◽  
Pablo E. Aqueveque
2019 ◽  
Vol 4 (2) ◽  
pp. 356-362
Author(s):  
Jennifer W. Means ◽  
Casey McCaffrey

Purpose The use of real-time recording technology for clinical instruction allows student clinicians to more easily collect data, self-reflect, and move toward independence as supervisors continue to provide continuation of supportive methods. This article discusses how the use of high-definition real-time recording, Bluetooth technology, and embedded annotation may enhance the supervisory process. It also reports results of graduate students' perception of the benefits and satisfaction with the types of technology used. Method Survey data were collected from graduate students about their use and perceived benefits of advanced technology to support supervision during their 1st clinical experience. Results Survey results indicate that students found the use of their video recordings useful for self-evaluation, data collection, and therapy preparation. The students also perceived an increase in self-confidence through the use of the Bluetooth headsets as their supervisors could provide guidance and encouragement without interrupting the flow of their therapy sessions by entering the room to redirect them. Conclusions The use of video recording technology can provide opportunities for students to review: videos of prospective clients they will be treating, their treatment videos for self-assessment purposes, and for additional data collection. Bluetooth technology provides immediate communication between the clinical educator and the student. Students reported that the result of that communication can improve their self-confidence, perceived performance, and subsequent shift toward independence.


2010 ◽  
Author(s):  
Anne Labouret ◽  
Michel Villoz

2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


2017 ◽  
pp. 58-76 ◽  
Author(s):  
A. Karpov

The paper considers the modern university as an economic growth driver within the University 3.0 concept (education, research, and commercialization of knowledge). It demonstrates how the University 3.0 is becoming the basis for global competitiveness of national economies and international alliances, and how its business ecosystem generates new fast-growing industries, advanced technology markets and cost-efficient administrative territories.


2003 ◽  
Vol 766 ◽  
Author(s):  
Kenneth Foster ◽  
Joost Waeterloos ◽  
Don Frye ◽  
Steve Froelicher ◽  
Mike Mills

AbstractThe electronics industry, in a continual drive for improved integrated device performance, is seeking increasingly lower dielectric constants (k) of the insulators that are used as interlayer dielectric (ILD) for advanced logic interconnects. As the industry continually seeks a stepwise reduction of the “effective” dielectric constant (keff), simple extendibility, leads to the consideration of the highest performance possible, namely air bridge technology. In this paper we will discuss requirements, integration schemes and properties for a novel class of materials that has been developed as part of an advanced technology probe into air bridge architecture. We will compare and contrast these potential technology offerings with other existing dense and porous ILD integration options, and show that the choice is neither trivial nor obvious.


Sign in / Sign up

Export Citation Format

Share Document