Air Bridge Technology: A Comparison of Novel Interconnect Materials and Integration Schemes for Beyond 45 nm

2003 ◽  
Vol 766 ◽  
Author(s):  
Kenneth Foster ◽  
Joost Waeterloos ◽  
Don Frye ◽  
Steve Froelicher ◽  
Mike Mills

AbstractThe electronics industry, in a continual drive for improved integrated device performance, is seeking increasingly lower dielectric constants (k) of the insulators that are used as interlayer dielectric (ILD) for advanced logic interconnects. As the industry continually seeks a stepwise reduction of the “effective” dielectric constant (keff), simple extendibility, leads to the consideration of the highest performance possible, namely air bridge technology. In this paper we will discuss requirements, integration schemes and properties for a novel class of materials that has been developed as part of an advanced technology probe into air bridge architecture. We will compare and contrast these potential technology offerings with other existing dense and porous ILD integration options, and show that the choice is neither trivial nor obvious.

2010 ◽  
Vol 1249 ◽  
Author(s):  
George Andrew Antonelli ◽  
Gengwei Jiang ◽  
Mandyam Sriram ◽  
Kaushik Chattopadhyay ◽  
Wei Guo ◽  
...  

AbstractOrganosilicate materials with dielectric constants (k) ranging from 3.0 to 2.2 are in production or under development for use as interlayer dielectric materials in advanced interconnect logic technology. The dielectric constant of these materials is lowered through the addition of porosity which lowers the film density, making the patterning of these materials difficult. The etching kinetics and surface roughening of a series of low-k dielectric materials with varying porosity and composition were investigated as a function of ion beam angle in a 7% C4F8/Ar chemistry in an inductively-coupled plasma reactor. A similar set of low-k samples were patterned in a single damascene scheme. With a basic understanding of the etching process, we will show that it is possible to proactively design a low-k material that is optimized for a given patterning. A case study will be used to illustrate this point.


1997 ◽  
Vol 476 ◽  
Author(s):  
Alvin L.S. Loke ◽  
Jeffrey T. Wetzel ◽  
John J. Stankus ◽  
S. Simon Wong

AbstractFluorinated polyimide can potentially replace TEOS as an interlevel dielectric in future ULSI interconnect technologies because its lower dielectric constant offers reduced crosstalk, signal propagation delay, and dynamic power dissipation. One issue associated with polyimides is the anisotropy in dielectric constant, where the smaller out-of-plane dielectric constant, typically measured using parallel-plate capacitors, can misleadingly exaggerate the advantage in reducing crosstalk. In this paper, we present a novel electrical technique to estimate the in-plane dielectric constant of DuPont FPI-136M fluorinated polyimide without requiring dielectric gapfill.A blanket FPI-136M film is deposited over interdigitated inlaid Al(0.5%Cu) structures and the crosstalk capacitance is measured. Identical inlaid structures with air and TEOS passivations are also measured for capacitance calibration. Differences in measured capacitances reflect electric fields fringing in the various passivation dielectrics above the inlaid metal. With the known dielectric constants of air and TEOS, the effective dielectric constant of FPI-136M is interpolated to be 2.8. Interconnect simulations confirm that the effective dielectric constant extraction technique is valid and accurate provided that the passivation layer is sufficiently thick to contain the fringing fields.To estimate the in-plane dielectric constant, we use simulations to determine the combination of in-plane and out-of-plane dielectric constants that is equivalent to the extracted effective dielectric constant. With an out-of-plane dielectric constant of 2.6, the in-plane dielectric constant of FPI-136M is estimated to be 3.0. This technique is applicable to other dieletrics.


Paliva ◽  
2021 ◽  
pp. 118-122
Author(s):  
David Dašek ◽  
Petr Roztočil ◽  
Jan Macák

The presented study concerns with the corrosion kinetics of two zirconium alloys: Zr-Nb-Sn-Fe and Zr-Nb-Fe. Alloy samples were pre-exposed at 360 °C in a LiOH solution containing 70 mg/l of lithium ions. Ex-situ electrochemical impedance spectroscopy (EIS) performed in 0.5 M potassium sulphate solution at 25 °C was used to study the properties of the oxide and kinetic transient effect. Evaluation of the impedance spectroscopy data was based on application of a simple equivalent circuit. The setup of the equivalent circuit conformed to Jonscher´s universal law of dielectric response. The analysis of the impedance data was aimed at estimation of non-dispersive capacitance of the oxide formed during the pre-exposure. Effective values of dielectric constant were calculated using the non-dispersive capacitance and the oxide thickness values, calculated from weight gains. For the pre-transient samples relatively higher values of dielectric constants were obtained. Typical pre-transient dielectric constants for Zr-Nb-Sn-Fe alloy ranged between 20–21, while slightly lower values were obtained for Zr-Nb-Fe alloy. In both alloys steep and significant decrease in effective dielectric constant (e_ef = 9–13) was found for the transient samples. The decrease correlated very well with the drop in percentage of tetragonal oxide determined by Raman spectroscopy and corresponded to the increase of the weight gains of the transient samples. Literature data indicate values of dielectric constants for tetragonal zirconium oxide between 38–46, while those for monoclinic oxide are usually presented between 12–22. The evidenced changes in dielectric constants are therefore in agreement with the expected decrease of tetragonal phase fraction in the oxide layer during the transient. In the Zr-Nb-Sn-Fe post-transient samples values of dielectric constant increased again to 18–20, therefore almost to the pre-transient level. This increase was not evidenced with Raman spectroscopy data, which show constant low content of the tetragonal fraction. Possible explanation of this disagreement is the location of the newly formed post-transient tetragonal oxide presumably at the metal/oxide interface. Oxide thickness of the post-transi-ent samples is 4–7 m and the oxide/metal interface is beyond access of the laser beam of Raman spectrometer. We can conclude that using ex-situ EIS, the transient was observable in both alloys; the change in the ratio of monoclinic and tetragonal phase can be evaluated based on the difference of effective dielectric constant of the two phases. The Zr-Nb-Sn-Fe alloy showed the onset of the transient after the 105th day of pre-exposure, but the change in the ratio of the monoclinic and tetragonal phases was less significant than in the Zr-Nb-Fe alloy, in which, however, the transient could be observed only after 147 days of pre-exposure. The resulting values of the effective dielectric constant of oxides correlated well with the percentage of tetragonal oxide determined by Raman spectroscopy and with the results of the weight gain method.


2013 ◽  
Vol 52 (1) ◽  
pp. 197-212 ◽  
Author(s):  
Liang Liao ◽  
Robert Meneghini

AbstractThe validity of the effective dielectric constant ɛeff for nonspherical mixed-phase particles is tested by comparing the scattering parameters of ice–water mixtures for oblate and prolate spheroids obtained from the conjugate-gradient and fast Fourier transform (CGFFT) numerical scheme with those computed from the T matrix for a homogeneous particle with the derived ɛeff with the same size, shape, and orientation as that of the mixed-phase particle. The accuracy of the effective dielectric constant is evaluated by examining whether the scattering parameters of interest can reproduce those of the direct computations, that is, the CGFFT results. Computations have been run over a range of prolate and oblate spheroids of different axial ratios up to size parameters of 4. It is found that the effective dielectric constant, obtained from realizations of small particles, can be applied to a class of particle types if the fractional water content remains the same. Analysis of the results indicates that the effective dielectric constant approach is useful in computing radar and radiometer polarimetric scattering parameters of nonspherical mixed-phase particles.


1995 ◽  
Vol 385 ◽  
Author(s):  
P. K. Wu

ABSTRACTMetal/Polymer systems have potential applications as interconnect materials in integrated circuits. Polymers with low dielectric constants, if used as interlayer dielectric, can reduce the RC time constant. Device speed can be doubled if a polymer can replace the present dielectric material, SiO2. However, the problem of weak metal/polymer adhesion must be understood and resolved. In situ deposition and analysis are the most controlled means to study an interface formation process. However, for practical reasons, i.e., application, time, cost, and flexibility, it is critical to study metal/polymer interface ex situ. X-ray Photoelectron Spectroscopy (XPS), can be used to determine the composition and bonding structures of buried interfaces. This is achieved by examining peeled surfaces, thin overlayer, and lowenergy- ion sputtered surfaces. The possible adhesion mechanism or failure mode is determined by correlating XPS results with adhesion strength. Based on these results, adhesion enhancement methods, such as substrate surface treatments, can be formulated. The product of these treatments can be evaluated using the same analysis. These techniques for studying buried interfaces using XPS are reviewed and results of their applications to the metal/Teflon AF 1600 interface is presented.


2002 ◽  
Vol 755 ◽  
Author(s):  
Mai T.N. Pham ◽  
B.A. Boukamp ◽  
H.J.M. Bouwmeester ◽  
D.H.A. Blank

ABSTRACTComposites between ferroelectric material and a dispersed metal phase are of great interest due to the improvement in dielectric properties for such applications as high capacitance capacitors, non-volatile memory, ect. Using a colloidal method, Pt particles with a size of 3–5 nm were dispersed homogeneously in a PZT (PbZr0.53Ti0.43O3) matrix. No unwanted reaction phase between PZT and Pt during sintering at 1150 °C could be detected by X-ray diffraction. Electrical properties were investigated by impedance spectroscopy measurement. The effective dielectric constant increased remarkably as a power function of Pt volume content and can be described by the percolation theory. At 25 vol.% of Pt the dielectric constant of the composite is 4 times larger than that of pure PZT. The temperature dependence of the electrical properties is also influenced by the metallic phase fraction.


MRS Advances ◽  
2017 ◽  
Vol 2 (44) ◽  
pp. 2361-2372 ◽  
Author(s):  
John H Zhang ◽  
Haigou Huang ◽  
Andrew M. Greene ◽  
Ruilong Xie ◽  
Soon-Cheon Seo ◽  
...  

ABSTRACTThe CMP challenges for advanced technology nodes are discussed. Global and local uniformity challenges and their cumulative effects are presented. Uniformity improvements for advanced node integration were achieved through slurry, pad and platen optimization, innovative integration schemes, the reduction of incoming variation and the reduction of cumulative effects. We discuss reduction of typical CMP defect types. Defects resulting from simple mechanisms (foreign material, polish residues) and those resulting from chemical and physical interactions (corrosion, chemical attack, scratches, physical migration) and strategies for control are studied. Defectivity reduction measures include new post-CMP clean chemicals, new slurries and pads and reduction of incoming defectivity. Finally we discuss an observed tradeoff between good defectivity and good uniformity.


SPE Journal ◽  
2019 ◽  
Vol 25 (01) ◽  
pp. 119-138 ◽  
Author(s):  
Yanhui Zhang ◽  
Femke C. Vossepoel ◽  
Ibrahim Hoteit

Summary An ensemble-based history-matching framework is proposed to enhance the characterization of petroleum reservoirs through the assimilation of crosswell electromagnetic (EM) data. As an advanced technology in reservoir surveillance, crosswell EM tomography can be used to estimate a cross-sectional conductivity map and associated saturation profile at an interwell scale by exploiting the sharp contrast in conductivity between hydrocarbons and saline water. Incorporating this information into reservoir simulation in combination with other available observations is expected to enhance the forecasting capability of reservoir models and to lead to better quantification of uncertainty. The proposed approach applies ensemble-based data-assimilation methods to build a robust and flexible framework in which various sources of available measurements can be integrated. A comparative study evaluates two different implementations of the assimilation of crosswell EM data. The first approach integrates the crosswell EM field components in their original form, which entails forward simulation of the observed EM responses from the simulated reservoir state. In the second approach, formation conductivity is derived from the EM data through inversion and is subsequently assimilated into the reservoir model. An image-oriented distance parameterization of the fluid front assimilates the conductivity field in an efficient and robust manner and overcomes issues with data size, errors, and their correlation. Numerical experiments for different test cases with increasing complexity provide insight into the performance of the two proposed integration schemes. The results demonstrate the efficiency of the developed history-matching workflow and the added value of crosswell EM data in enhancing the reservoir characterization and reliability of dynamic reservoir forecasts.


Author(s):  
Stephan Schömann ◽  
David Álvarez

Abstract For years there has been a discrepancy between the importance of complex doping implantation schemes for advanced technology device performance and the ability to accurately measure the carrier concentrations with the gap widening at each technology node. With scanning spreading resistance Microscopy (SSRM) a major step forward in terms of resolution and quantification was achieved especially since the emergence of full diamond tip manufacturability and improvements in sample preparation techniques. This article discusses the non-trivial prerequisites for this success and some examples from the failure analysis routine that show the promising capabilities of SSRM. The examples include technology monitoring and failure analysis in SOI transistors and vertical surrounded gate transistors, as well as failure analysis on yield and performance issues. SSRM has reached a development stage that allows its application as routine tool for 2D-carrier profiling.


2019 ◽  
Vol 60 ◽  
pp. 76-85
Author(s):  
I.G. Hernandez Linares ◽  
G. Gonzalez de la Cruz

In recent years, the tunable plasmon modes in the terahertz region of a multilayer graphene structure interacting with a metallic film substrate have attracted significant interest motivated by the graphene´s unique optical and electronic properties and the possibility to enhance light-matter interaction. In this work, the plasmon waves in graphene layered systems on a conducting thin film are investigated, the hybrid graphene-metal metamaterialis surrounded by two semi-infinite materials with different dielectric constants ε1andε2, respectively. The dispersion relations of electronic collective excitations are calculated by the zeros of an effective dielectric constant obtained from a recursive relation for the amplitudes associated with the electric field between graphene layers in the metamaterial. Long-range Coulomb interactions based on the hybrid layered graphene-metal structure lead new set spectra of collective excitations. At long wavelength (q®0) the optical modes (w~q1/2)depend on the two-dimensional carrier density, the metallic thickness, the metallic substrate plasmon frequency, the number of the graphene layers and the dielectric constants in which the hybrid graphene-metal structure is embedded. This latter plays an important role in a wide range of applications such as a surface plasmon resonance biological sensors and terahertz surface plasmons in optically pumped graphene metamaterials.


Sign in / Sign up

Export Citation Format

Share Document