Parametric identification of Box-Jenkins structured closed-loop Hammerstein systems using gravitational search algorithm

Author(s):  
P. S. Pal ◽  
S. Banerjee ◽  
R. Kar ◽  
D. Mandal ◽  
S. P. Ghoshal
2012 ◽  
pp. 1768-1789
Author(s):  
Abdolhossein Sadrnia ◽  
Hossein Nezamabadi-Pour ◽  
Mehrdad Nikbakht ◽  
Napsiah Ismail

Since late in the 20th century, various heuristic and metaheuristic optimization methods have been developed to obtain superior results and optimize models more efficiently. Some have been inspired by natural events and swarm behaviors. In this chapter, the authors illustrate empirical applications of the gravitational search algorithm (GSA) as a new optimization algorithm based on the law of gravity and mass interactions to optimize closed-loop logistics network. To achieve these aims, the need for a green supply chain will be discussed, and the related drivers and pressures motivate us to develop a mathematical model to optimize total cost in a closed-loop logistic for gathering automobile alternators at the end of their life cycle. Finally, optimizing total costs in a logistic network is solved using GSA in MATLAB software. To express GSA capabilities, a genetic algorithm (GA), as a common and standard metaheuristic algorithm, is compared. The obtained results confirm GSA’s performance and its ability to solve complicated network problems in closed-loop supply chain and logistics.


Author(s):  
Abdolhossein Sadrnia ◽  
Hossein Nezamabadi-Pour ◽  
Mehrdad Nikbakht ◽  
Napsiah Ismail

Since late in the 20th century, various heuristic and metaheuristic optimization methods have been developed to obtain superior results and optimize models more efficiently. Some have been inspired by natural events and swarm behaviors. In this chapter, the authors illustrate empirical applications of the gravitational search algorithm (GSA) as a new optimization algorithm based on the law of gravity and mass interactions to optimize closed-loop logistics network. To achieve these aims, the need for a green supply chain will be discussed, and the related drivers and pressures motivate us to develop a mathematical model to optimize total cost in a closed-loop logistic for gathering automobile alternators at the end of their life cycle. Finally, optimizing total costs in a logistic network is solved using GSA in MATLAB software. To express GSA capabilities, a genetic algorithm (GA), as a common and standard metaheuristic algorithm, is compared. The obtained results confirm GSA’s performance and its ability to solve complicated network problems in closed-loop supply chain and logistics.


2016 ◽  
Vol 3 (4) ◽  
pp. 1-11
Author(s):  
M. Lakshmikantha Reddy ◽  
◽  
M. Ramprasad Reddy ◽  
V.C. Veera Reddy ◽  
◽  
...  

Author(s):  
Umit Can ◽  
Bilal Alatas

The classical optimization algorithms are not efficient in solving complex search and optimization problems. Thus, some heuristic optimization algorithms have been proposed. In this paper, exploration of association rules within numerical databases with Gravitational Search Algorithm (GSA) has been firstly performed. GSA has been designed as search method for quantitative association rules from the databases which can be regarded as search space. Furthermore, determining the minimum values of confidence and support for every database which is a hard job has been eliminated by GSA. Apart from this, the fitness function used for GSA is very flexible. According to the interested problem, some parameters can be removed from or added to the fitness function. The range values of the attributes have been automatically adjusted during the time of mining of the rules. That is why there is not any requirements for the pre-processing of the data. Attributes interaction problem has also been eliminated with the designed GSA. GSA has been tested with four real databases and promising results have been obtained. GSA seems an effective search method for complex numerical sequential patterns mining, numerical classification rules mining, and clustering rules mining tasks of data mining.


Sign in / Sign up

Export Citation Format

Share Document