Recurrent Neural Networks Trained With Backpropagation Through Time Algorithm to Estimate Nonlinear Load Harmonic Currents

2008 ◽  
Vol 55 (9) ◽  
pp. 3484-3491 ◽  
Author(s):  
J. Mazumdar ◽  
R.G. Harley
1994 ◽  
Vol 6 (2) ◽  
pp. 296-306 ◽  
Author(s):  
Françoise Beaufays ◽  
Eric A. Wan

We show that signal flow graph theory provides a simple way to relate two popular algorithms used for adapting dynamic neural networks, real-time backpropagation and backpropagation-through-time. Starting with the flow graph for real-time backpropagation, we use a simple transposition to produce a second graph. The new graph is shown to be interreciprocal with the original and to correspond to the backpropagation-through-time algorithm. Interreciprocity provides a theoretical argument to verify that both flow graphs implement the same overall weight update.


2021 ◽  
Vol 15 ◽  
Author(s):  
Axel Laborieux ◽  
Maxence Ernoult ◽  
Benjamin Scellier ◽  
Yoshua Bengio ◽  
Julie Grollier ◽  
...  

Equilibrium Propagation is a biologically-inspired algorithm that trains convergent recurrent neural networks with a local learning rule. This approach constitutes a major lead to allow learning-capable neuromophic systems and comes with strong theoretical guarantees. Equilibrium propagation operates in two phases, during which the network is let to evolve freely and then “nudged” toward a target; the weights of the network are then updated based solely on the states of the neurons that they connect. The weight updates of Equilibrium Propagation have been shown mathematically to approach those provided by Backpropagation Through Time (BPTT), the mainstream approach to train recurrent neural networks, when nudging is performed with infinitely small strength. In practice, however, the standard implementation of Equilibrium Propagation does not scale to visual tasks harder than MNIST. In this work, we show that a bias in the gradient estimate of equilibrium propagation, inherent in the use of finite nudging, is responsible for this phenomenon and that canceling it allows training deep convolutional neural networks. We show that this bias can be greatly reduced by using symmetric nudging (a positive nudging and a negative one). We also generalize Equilibrium Propagation to the case of cross-entropy loss (by opposition to squared error). As a result of these advances, we are able to achieve a test error of 11.7% on CIFAR-10, which approaches the one achieved by BPTT and provides a major improvement with respect to the standard Equilibrium Propagation that gives 86% test error. We also apply these techniques to train an architecture with unidirectional forward and backward connections, yielding a 13.2% test error. These results highlight equilibrium propagation as a compelling biologically-plausible approach to compute error gradients in deep neuromorphic systems.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Author(s):  
Faisal Ladhak ◽  
Ankur Gandhe ◽  
Markus Dreyer ◽  
Lambert Mathias ◽  
Ariya Rastrow ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document