A Novel and Simple Torque Ripple Minimization Method of Synchronous Reluctance Machine Based on Torque Function Method

2021 ◽  
Vol 68 (1) ◽  
pp. 92-102 ◽  
Author(s):  
Hailong Wu ◽  
Daniel Depernet ◽  
Vincent Lanfranchi ◽  
Khadija Ei Kadri Benkara ◽  
M. A. H. Rasid
Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Federica Uberti ◽  
Lucia Frosini ◽  
Loránd Szabó

A new procedure for the design and optimization of the rotor laminations of a synchronous reluctance machine is presented in this paper. The configuration of the laminations is symmetrical and contains fluid-shaped barriers. The parametrization principle is used, which executes variations in the lamination geometry by changing the position, thickness and shape of the flux barriers. Hence, the optimization procedure analyzes the various configurations through finite element simulations, by means of the communication between MATLAB and Flux 2D. In the post processing stage, the best geometry which optimizes mean torque, torque ripple, efficiency and power factor is selected. Once the best rotor configuration is defined, further investigations allow improving its performance by modifying the current angle, the stator winding and the thickness of the radial ribs.


Author(s):  
K. Wang ◽  
Z.Q. Zhu ◽  
G. Ombach ◽  
M. Koch ◽  
S. Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple. Design/methodology/approach – AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple. Findings – The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier. Research limitations/implications – The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. Originality/value – This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.


Author(s):  
Xiping Liu ◽  
Ya Li ◽  
Zhangqi Liu

In this paper, a novel permanent magnet-assisted synchronous reluctance machine (PMASynRM) with rare-earth PMs and ferrite magnets is proposed. The performance of PMASynRM is discussed with respected to the different magnet ratio of rare-earth PMs and ferrite magnets. Some characteristics including the flux density, output torque, cogging torque, output power, power factor, torque ripple, loss, efficiency, and demagnetization are calculated by 2-D finite element analysis (FEA). The analysis results show that the excellent performance can be obtained by using hybrid magnet of rare-earth PMs and ferrite magnets with the suitable magnet ratio, and provide some desirable cost-performance trade-off.


Author(s):  
Haiwei Cai ◽  
Bo Guan ◽  
Longya Xu ◽  
Woongchul Choi

Purpose – The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent magnet (PM) in electric machine for vehicle traction applications. Design/methodology/approach – A typical rare earth interior permanent magnet (IPM) machine is used as the benchmark to conduct the optimal design study. Based on the flux distribution, major changes are made to the rotor lamination design. Enhanced torque production and lower torque ripple are specifically targeted as the two main objectives of the proposed design approach. Findings – As a result, the optimally designed SynRM can achieve performance very close to that of the benchmark PM machine with a potential for further improvement. Originality/value – Discussions of IPM replacement by optimally designed SynRM in electrical and hybrid electrical vehicles are given in terms of performance and cost.


Sign in / Sign up

Export Citation Format

Share Document