lower torque
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 10)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 10 (6) ◽  
pp. 3019-3031
Author(s):  
N. A. A. Razali ◽  
Nor Maniha Abdul Ghani ◽  
Bifta Sama Bari

The current study emphasizes on improving an interval type-2 fuzzy logic control (IT2FLC) system through the use of spiral dynamics algorithm (SDA) optimization in stabilizing a transformational two-wheeled wheelchair. The main contribution of this research is to reduce vibrations while performing the lifting and stabilization of a wheelchair from its standard four-wheeled to two-wheeled transformation. IT2FLC based SDA was used to enhance the system’s stability performance by obtaining the optimized value for input and output controller gains and IT2FLC parameters for IT2FLC. System modeling was done through development within the SimWise 4D software environment, which was then integrated with MATLAB/SIMULINK for control purposes. The proposed algorithm has demonstrated improved tilt angle performance with reduced noise and lower torque when various disturbances were applied, as compared to a system solely controlled by IT2FLC without any optimization. Moreover, the proposed algorithm has also comprehensively outperformed previous controllers in terms of system’s stability, further demonstrated its superiority as a system controller within transformational wheelchairs.


Author(s):  
Suying Liu ◽  
Jinlin Huang

Purpose This paper aims to propose a spoke-type fractional-slot concentrated windings (FSCW) PM machine for EVs driving system to improve torque density. To further improve electromagnetic performance, the multi-objective optimization design is processed based on response surface (RS) model and simulated annealing cuckoo search (SA-CS) algorithm. Design/methodology/approach The spoke-type FSCW PM machine is designed and optimized to meet the requirement of EVs driving system. First, a spoke-type FSCW PM machine is designed and some of key parameters are obtained based on equivalent magnetic circuit (EMC) method. Then, the RS model and modified SA-CS algorithm are proposed to obtain higher torque, lower torque ripple and higher efficiency. Findings After verification by finite element method for no-load and load performance, the optimal machine has higher torque density, lower torque ripple and higher efficiency compared with initial machine. Finally, a 20 kW prototype is manufactured and tested to verify the validity of the proposed optimization design method. Originality/value This paper designs a high torque density spoke-type FSCW PM machine, which is superior for EVs driving system. Meanwhile, a novel modified SA-CS algorithm is applied to the field of electrical machine multi-objective optimal design.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4172
Author(s):  
Da-Chen Pang ◽  
Zhen-Jia Shi ◽  
Young-Ho Chang ◽  
Hua-Chih Huang ◽  
Gia-Thinh Bui

This study describes the development of the world’s smallest interior permanent magnet synchronous motor (IPMSM) to increase the torque density of micromotors. The research evaluates the feasibility of the miniaturization of IPMSM since recent studies in this area focus on medium to large size compressor and traction motor applications. The standard-type and spoke-type IPMSM were selected for ease of micro machining. In order to surpass the performance of an inset motor of the same size used in previous research, the interior motors were designed with a different slot pole number, permanent magnet shape and rotor structure. Two types of interior motors were manufactured and tested to compare their performance. It was shown that the spoke-type interior motor had a better output torque, while the standard-type interior motor had a lower torque ripple, and both motors matched the specifications of commercially available motors. To achieve a higher torque density, the IPMSM designs increased the slot pole number from 6 slots 4 poles to 9 slots 6 poles. The torque density of the spoke-type motor was increased by 48% compared to the inset motor. The disadvantage is that the new design has a greater number of parts and smaller size, resulting in difficulties in manufacturing and assembly.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2750
Author(s):  
Andyn Omanovic ◽  
Norbert Zsiga ◽  
Patrik Soltic ◽  
Christopher Onder

Spark-ignited internal combustion engines are known to exhibit a decreased brake efficiency in part-load operation. Similarly to cylinder deactivation, the x-stroke operation presented in this paper is an adjustable form of skip-cycle operation. It is an effective measure to increase the efficiency of an internal combustion engine, which has to be equipped with a variable valve train to enable this feature. This paper presents an optimization procedure for the exhaust valve timings applicable to any valid stroke operation number greater than four. In the first part, the gas spring operation, during which all gas exchange valves are closed, is explained, as well as how it affects the indicated efficiency and the blow-by mass flow. In the second part, a simulation model with variable valve timings, parameterized with measurement data obtained on the engine test, is used to find the optimal valve timings. We show that in 12-stroke operation and with a cylinder load of 5 Nm, an indicated efficiency of 34.3% is achieved. Preloading the gas spring with residual gas prevents oil suction and thus helps to reduce hydrocarbon emissions. Measurements of load variations in 4-, 8-, and 12-stroke operations show that by applying an x-stroke operation, the indicated efficiency remains high and the center of combustion remains optimal in the range of significantly lower torque outputs.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2744
Author(s):  
Branko Ban ◽  
Stjepan Stipetic ◽  
Tino Jercic

Although rare earth materials are the critical component in high torque density permanent magnet machines, their use has historically been a commercial risk. The alternatives that have been in the recent industry focus are synchronous reluctance machines (SyRM). They have lower torque density but also relatively low material cost and higher overload capability. Multi-layer IPM and SyRM machines have significant geometric complexity, resulting in a high number of parameters. Considering that modern machine design requires the use of optimization algorithms with computational load proportional to the number of parameters, the whole design process can take several days. This paper presents novel SyRM parameterization with reduced number of parameters. Furthermore, the paper introduces the novel forced feasibility concept, applied on rotor barrier parameters, resulting in improved optimization convergence with overall optimization time reduced by 12.3%. Proposed approaches were demonstrated using optimization procedure based on the existing differential evolution algorithm (DE) framework.


2020 ◽  
pp. 036354652097662
Author(s):  
Vincent A. Lizzio ◽  
D. Grace Smith ◽  
Eric W. Guo ◽  
Austin G. Cross ◽  
Caleb M. Gulledge ◽  
...  

Background: Postoperative rehabilitation protocols after ulnar collateral ligament (UCL) reconstruction typically involve a structured interval throwing program. In an effort to minimize torque placed on the UCL, athletes are often instructed to throw with a crow hop, even at short throwing distances. However, the effect of the crow hop on medial elbow stress is unknown. Purpose/Hypothesis: The purpose was to determine whether elbow stress differs with and without a crow hop across the throwing distances of a typical interval throwing program. We hypothesized that crow hop throws would generate lower torque on the elbow than standing throws at each distance of the interval throwing program. Study Design: Controlled laboratory study. Methods: Healthy high school and collegiate pitchers and position players were recruited from the surrounding area. Each player was outfitted with a wearable athletic sleeve and device that recorded elbow torque (Newton-meters), arm slot (degrees), arm speed (revolutions per minute), and shoulder rotation (degrees). Ball velocity (miles per hour) was measured using a radar gun. Players were instructed to perform 3 crow hop throws and 3 standing throws at distances of 30, 45, 60, 90, 120, 150, and 180 feet. A repeated measures analysis of variance was used to compare ball velocity, elbow torque, arm slot, arm speed, and shoulder rotation between crow hop and standing throws at each throwing distance. Results: Twenty athletes participated in this study (average age, 17.8 years; range, 15-25 years). The average medial elbow torque increased at each distance for both crow hop and standing throws at distances of 30, 45, 60, and 90 feet ( P < .05), after which there were no significant increases in elbow torque ( P > .05). The average torque was higher for crow hop throws than standing throws at distances of 30 feet (13.9 N·m vs 12.0 N·m; P = .002), 45 feet (21.8 N·m vs 19.3 N·m; P = .005), and 60 feet (28.0 N·m vs 24.5 N·m; P = .02). Conclusion: Crow hop throws generated greater medial elbow torque than standing throws at distances up to 60 feet; however, there were no differences in elbow torque at distances greater than 60 feet between the 2 throw types. For both crow hop and standing throws, elbow stress increased at each distance interval up to 90 feet before plateauing at distances greater than 90 feet. The crow hop throwing technique does not reduce medial elbow stress during a simulated interval throwing program, and it may actually increase torque at shorter throwing distances. Clinical Relevance: The results of our study indicate that it would be prudent for players to initially perform standing throws at shorter distances and only later be allowed to employ a natural crow hop at greater distances to minimize torque placed on the medial elbow during UCL rehabilitation protocols.


Author(s):  
Rick de Klerk ◽  
Vera Velhorst ◽  
Dirkjan (H.E.J.) Veeger ◽  
Lucas H. V. van der Woude ◽  
Riemer J. K. Vegter

Abstract Background Handrim wheelchair propulsion is often assessed in the laboratory on treadmills (TM) or ergometers (WE), under the assumption that they relate to regular overground (OG) propulsion. However, little is known about the agreement of data obtained from TM, WE, and OG propulsion under standardized conditions. The current study aimed to standardize velocity and power output among these three modalities to consequently compare obtained physiological and biomechanical outcome parameters. Methods Seventeen able-bodied participants performed two submaximal practice sessions before taking part in a measurement session consisting of 3 × 4 min of submaximal wheelchair propulsion in each of the different modalities. Power output and speed for TM and WE propulsion were matched with OG propulsion, making them (mechanically) as equal as possible. Physiological data and propulsion kinetics were recorded with a spirometer and a 3D measurement wheel, respectively. Results Agreement among conditions was moderate to good for most outcome variables. However, heart rate was significantly higher in OG propulsion than in the TM condition. Push time and contact angle were smaller and fraction of effective force was higher on the WE when compared to OG/TM propulsion. Participants used a larger cycle time and more negative work per cycle in the OG condition. A continuous analysis using statistical parametric mapping showed a lower torque profile in the start of the push phase for TM propulsion versus OG/WE propulsion. Total force was higher during the start of the push phase for the OG conditions when compared to TM/WE propulsion. Conclusions Physiological and biomechanical outcomes in general are similar, but possible differences between modalities exist, even after controlling for power output using conventional techniques. Further efforts towards increasing the ecological validity of lab-based equipment is advised and the possible impact of these differences -if at all- in (clinical) practice should be evaluated.


2019 ◽  
Vol 6 (2) ◽  
pp. 139
Author(s):  
Jamal Jamal ◽  
A. M. Shiddiq Yunus ◽  
Lewi Lewi

Savonius wind turbine is one of the wind turbines that is more widely used for low energy needs, with more energy needs, this turbine type is very feasible to be developed. This research aims to improve the performance of Savonius wind turbines with variations in turbine blade curvature and variations in wind speed. The research method is a laboratory experiment on the fan test, the blade curvature test variation is 1R; 1.5R and 2R, another variation is the wind speed which are 4.0; 5.5; 7.0 and 8.5 m/s. The experiement results shows that the greater the wind speed, the input power, air mass flow velocity, power output, and efficiency will be even greater; the greater the load force on the turbine shaft, the torque on the turbine shaft will also be greater; the relationship of force loads to power output and turbine efficiency is to construct a parabolic curve; for the same wind speed, the 2R turbine has the lowest rotation, power output and efficiency compared to the 1R and 1.5R turbines; at the same wind speed the 1R turbine produces a higher rotation but requires lower torque than the 1.5R turbine; at low wind speeds (4 m / s) the 1.5R turbine has better efficiency than the 1R turbine, whereas at the high wind speed (8.5 m/s) the 1R turbine has a better efficiency than the 1.5R turbine; The maximum efficiency is obtained at 89.56% in the 1R curvature turbine with a wind speed of 8.5 m / s.


Author(s):  
Xiaodong Sun ◽  
Jiangling Wu ◽  
Shaohua Wang ◽  
Kaikai Diao ◽  
Zebin Yang

Purpose The torque ripple and fault-tolerant capability are the two main problems for the switched reluctance motors (SRMs) in applications. The purpose of this paper, therefore, is to propose a novel 16/10 segmented SRM (SSRM) to reduce the torque ripple and improve the fault-tolerant capability in this work. Design/methodology/approach The stator of the proposed SSRM is composed of exciting and auxiliary stator poles, while the rotor consists of a series of discrete segments. The fault-tolerant and torque ripple characteristics of the proposed SSRM are studied by the finite element analysis (FEA) method. Meanwhile, the characteristics of the SSRM are compared with those of a conventional SRM with 8/6 stator/rotor poles. Finally, FEA and experimental results are provided to validate the static and dynamic characteristics of the proposed SSRM. Findings It is found that the proposed novel 16/10 SSRM for the application in the belt-driven starter generator (BSG) possesses these functions: less mutual inductance and high fault-tolerant capability. It is also found that the proposed SSRM provides lower torque ripple and higher output torque. Finally, the experimental results validate that the proposed SSRM runs with lower torque ripple, better output torque and fault-tolerant characteristics, making it an ideal candidate for the BSG and similar systems. Originality/value This paper presents the analysis of torque ripple and fault-tolerant capability for a 16/10 segmented switched reluctance motor in hybrid electric vehicles. Using FEA simulation and building a test bench to verify the proposed SSRM’s superiority in both torque ripple and fault-tolerant capability.


Sign in / Sign up

Export Citation Format

Share Document