Optimal design of synchronous reluctance machine

Author(s):  
Haiwei Cai ◽  
Bo Guan ◽  
Longya Xu ◽  
Woongchul Choi

Purpose – The purpose of this paper is to present optimally designed synchronous reluctance machine (SynRM) to demonstrate the feasibility of eliminating the use of rare earth permanent magnet (PM) in electric machine for vehicle traction applications. Design/methodology/approach – A typical rare earth interior permanent magnet (IPM) machine is used as the benchmark to conduct the optimal design study. Based on the flux distribution, major changes are made to the rotor lamination design. Enhanced torque production and lower torque ripple are specifically targeted as the two main objectives of the proposed design approach. Findings – As a result, the optimally designed SynRM can achieve performance very close to that of the benchmark PM machine with a potential for further improvement. Originality/value – Discussions of IPM replacement by optimally designed SynRM in electrical and hybrid electrical vehicles are given in terms of performance and cost.

Author(s):  
K. Wang ◽  
Z.Q. Zhu ◽  
G. Ombach ◽  
M. Koch ◽  
S. Zhang ◽  
...  

Purpose – The purpose of this paper is to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of synchronous reluctance machine with emphasis on output torque capability and torque ripple. Design/methodology/approach – AC synchronous reluctance machine (SynRM) or permanent magnet assisted SynRM presently receives a great deal of interest, since there is less or even no rare-earth permanent magnet in the rotor. Most of SynRM machines employ a stator that is originally designed for a standard squirrel cage induction motor for a similar output rating and application, or the SynRM machine with 24-slot, four-pole are often directly chosen for investigation in most of the available literature. Therefore, it is necessary to investigate the influence of stator and rotor pole number combinations together with the flux-barrier layers number on the performance of SynRM machine with emphasis on output torque capability and torque ripple. Findings – The average torque decreases with the increase of the pole numbers but remain almost constant when employing different stator slot numbers but with the same pole number. In addition, the torque ripple decreases significantly with the increase of the stator slot number. The machine with double-layer flux-barrier in the rotor has the biggest average torque, while the machines with three- and four-layer flux-barrier in the rotor have almost the same average torque but their value is slightly smaller than that of machine with double-layer flux-barrier. However, the machine with three-layer flux-barrier has the lowest torque ripple but the highest torque ripple exists in the machine with double-layer flux-barrier. Research limitations/implications – The purely sinusoidal currents are applied in this analysis and the effects of harmonics in the current on torque ripple are not considered in this application. Originality/value – This paper has analyzed the torque ripple and average torque of SynRMs with considering slot/pole number combinations together with the flux-barrier number.


Author(s):  
Xiping Liu ◽  
Ya Li ◽  
Zhangqi Liu

In this paper, a novel permanent magnet-assisted synchronous reluctance machine (PMASynRM) with rare-earth PMs and ferrite magnets is proposed. The performance of PMASynRM is discussed with respected to the different magnet ratio of rare-earth PMs and ferrite magnets. Some characteristics including the flux density, output torque, cogging torque, output power, power factor, torque ripple, loss, efficiency, and demagnetization are calculated by 2-D finite element analysis (FEA). The analysis results show that the excellent performance can be obtained by using hybrid magnet of rare-earth PMs and ferrite magnets with the suitable magnet ratio, and provide some desirable cost-performance trade-off.


Author(s):  
Xiping Liu ◽  
Ya Li ◽  
Zhangqi Liu ◽  
Tao Ling ◽  
Zhenhua Luo

Purpose The purpose of this paper is to propose a permanent magnet-assisted synchronous reluctance machine (PMASynRM) using ferrite magnets with the same power density as rare-earth PM synchronous motors used in Toyota Prius 2010. Design/methodology/approach A novel rotor structure with rectangular PMs is discussed with respect to the demagnetization of ferrite magnets and mechanical strength. Some electromagnetic characteristics including torque, output power, loss and efficiency are calculated by 2D finite element analysis. Findings The results of the analysis show that a high power density and high efficiency for PMASynRM can be achieved using ferrite magnets. Originality/value This paper proposes a novel rotor structure of PMASynRM with low-cost ferrite magnets that achieves high power density as permanent machines with rare-earth PMs.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4172
Author(s):  
Da-Chen Pang ◽  
Zhen-Jia Shi ◽  
Young-Ho Chang ◽  
Hua-Chih Huang ◽  
Gia-Thinh Bui

This study describes the development of the world’s smallest interior permanent magnet synchronous motor (IPMSM) to increase the torque density of micromotors. The research evaluates the feasibility of the miniaturization of IPMSM since recent studies in this area focus on medium to large size compressor and traction motor applications. The standard-type and spoke-type IPMSM were selected for ease of micro machining. In order to surpass the performance of an inset motor of the same size used in previous research, the interior motors were designed with a different slot pole number, permanent magnet shape and rotor structure. Two types of interior motors were manufactured and tested to compare their performance. It was shown that the spoke-type interior motor had a better output torque, while the standard-type interior motor had a lower torque ripple, and both motors matched the specifications of commercially available motors. To achieve a higher torque density, the IPMSM designs increased the slot pole number from 6 slots 4 poles to 9 slots 6 poles. The torque density of the spoke-type motor was increased by 48% compared to the inset motor. The disadvantage is that the new design has a greater number of parts and smaller size, resulting in difficulties in manufacturing and assembly.


2016 ◽  
Vol 856 ◽  
pp. 227-232
Author(s):  
Chang Chou Hwang ◽  
Cheng Tsung Liu ◽  
Chia Ming Chang

This paper presents a permanent magnet synchronous serve motor (PMSSM) to replace an induction motor (IM) in the oil hydraulic system in machine tools to drive a pump for supplying the oil. The proposed is designed to meet not only the machine performance, such as higher average torque per volume of magnet usage and the efficiency, and lower torque ripple, but also the energy-saving policy. The motor is optimized using the fuzzy-based Taguchi method. Finally, the proposed motor is installed in the machine tools for measurement, and compared with the tradition machine tools installed with IM.


2012 ◽  
Vol 472-475 ◽  
pp. 1263-1266 ◽  
Author(s):  
Chang Chou Hwang ◽  
Chia Ming Chang ◽  
Shih Ping Cheng

This paper presents a two-step optimization of shape design for the performance improvement of an interior permanent magnet (IPM) motor. Results from the optimized motor demonstrate that the motor performs favorably with respect to minimization of torque ripple and maximization of average torque to PM volume ratio.


Sign in / Sign up

Export Citation Format

Share Document