A Reinforcement Learning-Based Reconstruction Method for Complex Defect Profiles in MFL Inspection

2021 ◽  
Vol 70 ◽  
pp. 1-10
Author(s):  
Zhenning Wu ◽  
Yiming Deng ◽  
Jinhai Liu ◽  
Lixing Wang
2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Lei Cai ◽  
Peien Luo ◽  
Guangfu Zhou ◽  
Tao Xu ◽  
Zhenxue Chen

Compared with traditional imaging, the light field contains more comprehensive image information and higher image quality. However, the available data for light field reconstruction are limited, and the repeated calculation of data seriously affects the accuracy and the real-time performance of multiperspective light field reconstruction. To solve the problems, this paper proposes a multiperspective light field reconstruction method based on transfer reinforcement learning. Firstly, the similarity measurement model is established. According to the similarity threshold of the source domain and the target domain, the reinforcement learning model or the feature transfer learning model is autonomously selected. Secondly, the reinforcement learning model is established. The model uses multiagent (i.e., multiperspective) Q-learning to learn the feature set that is most similar to the target domain and the source domain and feeds it back to the source domain. This model increases the capacity of the source-domain samples and improves the accuracy of light field reconstruction. Finally, the feature transfer learning model is established. The model uses PCA to obtain the maximum embedding space of source-domain and target-domain features and maps similar features to a new space for label data migration. This model solves the problems of multiperspective data redundancy and repeated calculations and improves the real-time performance of maneuvering target recognition. Extensive experiments on PASCAL VOC datasets demonstrate the effectiveness of the proposed algorithm against the existing algorithms.


Author(s):  
Neng-Yu Zhang ◽  
Terence Wagenknecht ◽  
Michael Radermacher ◽  
Tom Obrig ◽  
Joachim Frank

We have reconstructed the 40S ribosomal subunit at a resolution of 4 nm using the single-exposure pseudo-conical reconstruction method of Radermacher et al.Small (40S) ribosomal subunits were Isolated from rabbit reticulocytes, applied to grids and negatively stained (0.5% uranyl acetate) in a manner that “sandwiches” the specimen between two layers of carbon. Regions of the grid exhibiting uniform and thick staining were identified and photographed twice (magnification 49,000X). The first micrograph was always taken with the specimen tilted by 50° and the second was of the Identical area untilted (Fig. 1). For each of the micrographs the specimen was subjected to an electron dose of 2000-3000 el/nm2.Three hundred thirty particles appearing in the L view (defined in [4]) were selected from both tilted- and untilted-specimen micrographs. The untilted particles were aligned and their rotational alignment produced the azimuthal angles of the tilted particles in the conical tilt series.


Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document