The Optimization and Stabilization of Pump Light Frequency in the Minimized Atomic Magnetometer

2021 ◽  
Vol 70 ◽  
pp. 1-9
Author(s):  
Yuchen Jia ◽  
Zhanchao Liu ◽  
Zhen Chai ◽  
Xiaoyang Liang ◽  
Wenfeng Wu
Keyword(s):  
1991 ◽  
Vol 138 (6) ◽  
pp. 396 ◽  
Author(s):  
K. Suto ◽  
T. Kimura ◽  
J. Nishizawa
Keyword(s):  

1995 ◽  
Vol 395 ◽  
Author(s):  
D.A.S. Loeber ◽  
J.M. Redwing ◽  
N.G. Anderson ◽  
M.A. Tischler

ABSTRACTEdge emission characteristics of optically pumped GaN-AlGaN double heterostructures and quantum wells are examined. The samples, which were grown by metalorganic vapor phase epitaxy, are photoexcited with light from a pulsed nitrogen laser. The pump light is focused to a narrow stripe on the sample surface, oriented perpendicular to a cleaved edge, and the edge luminescence is collected and analyzed. We first compare emission characteristics of highly excited GaN-AlGaN double heterostructures grown simultaneously on SiC and sapphire substrates. Polarization resolved spectral properties of edge luminescence from both structures is studied as a function of pump intensity and excitation stripe length. Characteristics indicative of stimulated emission are observed, particularly in the sample grown on SiC. We then present results demonstrating laser emission from a GaN-AlGaN separate-confinement quantum-well heterostructure. At high pump intensities, band edge emission from the quantum well exhibits five narrow (∼1 Å) modes which are evenly spaced by 10Å to within the resolution of the spectrometer. This represents the first demonstration of laser action in a GaN-based quantum-well structure.


2001 ◽  
Vol 694 ◽  
Author(s):  
C. Tapalian ◽  
J.-P. Laine ◽  
P. A. Lane

AbstractWe report optical switching by a silica microsphere optical resonator coated by a conjugated polymer. Microspheres were fabricated by melting the tip of an optical fiber and coated by dipping in a 1 mg/ml toluene solution of poly(2,5-dioctyloxy-1,4-phenylenevinylene) (DOO-PPV). The resonator properties were characterized by evanescently coupling 1.55 µm light propagating along a stripline-pedestal anti-resonant reflecting optical waveguide into optical whispering gallery modes (WGMs). WGM linewidths less than 2 MHz were measured, corresponding to cavity Q > 108. WGM resonant frequency shifts as large as 3.2 GHz were observed when 405 nm pump light with a power density of ~100 mW/cm2 was incident on the microsphere. The time constant of the observed frequency shifts is approximately 0.165 seconds, leading us to attribute the frequency shift to thermo-optic effects. Such a system should be capable of thermo-optically switching at speeds on the order of 10 kHz.


2004 ◽  
Vol 40 (9) ◽  
pp. 1301-1305 ◽  
Author(s):  
P. Kano ◽  
D. Kouznetsov ◽  
J.V. Moloney ◽  
M. Brio

2008 ◽  
Vol 35 (5) ◽  
pp. 643-646 ◽  
Author(s):  
史彭 Shi Peng ◽  
李金平 Li Jinping ◽  
李隆 Li Long ◽  
甘安生 Gan Ansheng

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1439 ◽  
Author(s):  
Zhihe Guo ◽  
Haotian Wang ◽  
Chenming Zhao ◽  
Lin Chen ◽  
Sheng Liu ◽  
...  

We present the spectral modulation of an optofluidic microdisk device and investigate the mechanism and characteristics of the microdisk laser in aqueous media. The optofluidic microdisk device combines a solid-state dye-doped polymer microdisk with a microfluidic channel device, whose optical field can interact with the aqueous media. Interesting phenomena, such as mode splitting and single-mode lasing in the laser spectrum, can be observed in two coupled microdisks under the pump laser. We modulated the spectra by changing the gap of the two coupled microdisks, the refractive indices of the aqueous media, and the position of a pump light, namely, selective pumping schemes. This optofluidic microlaser provides a method to modulate the laser spectra precisely and flexibly, which will help to further understand spectral properties of coupled microcavity laser systems and develop potential applications in photobiology and photomedicine.


Nanomaterials ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 615 ◽  
Author(s):  
Yongling Zhang ◽  
Yudi Shi ◽  
Zhengkun Qin ◽  
Mingxing Song ◽  
Weiping Qin

Small fluoride nanoparticles (NPs) with strong down-conversion (DC) luminescence at 1.5 μm are quite desirable for optical fiber communication systems. Nevertheless, a problem exists regarding how to synthesize small fluoride NPs with strong DC emission at 1.5 μm. Herein, we propose an approach to improve 1.5 μm emission of BaLuF5:Yb3+,Er3+ NPs by way of combining doping Ce3+ ions and coating multiple BaLuF5: Yb3+ active-shells. We prepared the BaLuF5:18%Yb3+,2%Er3+,2%Ce3+ NPs through a high-boiling solvent method. The effect of Ce3+ concentration on the DC luminescence was systematically investigated in the BaLuF5:Yb3+,Er3+ NPs. Under a 980 nm laser excitation, the intensities of 1.53 μm emission of BaLuF5:18%Yb3+,2%Er3+,2%Ce3+ NPs was enhanced by 2.6 times comparing to that of BaLuF5:18%Yb3+,2%Er3+ NPs since the energy transfer between Er3+ and Ce3+ ions: Er3+:4I11/2 (Er3+) + 2F5/2 (Ce3+) → 4I13/2 (Er3+) + 2F7/2 (Ce3+). Then, we synthesized BaLuF5:18%Yb3+,2%Er3+,2%Ce3+@BaLuF5:5%Yb3+@BaLuF5:5%Yb3+ core-active-shell-active-shell NPs via a layer-by-layer strategy. After coating two BaLuF5:Yb3+ active-shell around BaLuF5:Yb3+,Er3+,Ce3+ NPs, the intensities of the 1.53 μm emission was enhanced by 44 times compared to that of BaLuF5:Yb3+,Er3+ core NPs, since the active-shells could be used to not only suppress surface quenching but also to transfer the pump light to the core region efficiently through Yb3+ ions inside the active-shells.


2011 ◽  
Author(s):  
Matthias Wohlmuth ◽  
Christoph Pflaum

Sign in / Sign up

Export Citation Format

Share Document