scholarly journals Road Surface 3D Reconstruction Based on Dense Subpixel Disparity Map Estimation

2018 ◽  
Vol 27 (6) ◽  
pp. 3025-3035 ◽  
Author(s):  
Rui Fan ◽  
Xiao Ai ◽  
Naim Dahnoun
Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3526 ◽  
Author(s):  
Ayhan ◽  
Kwan

In this paper, we introduce an in-depth application of high-resolution disparity map estimation using stereo images from Mars Curiosity rover’s Mastcams, which have two imagers with different resolutions. The left Mastcam has three times lower resolution as that of the right. The left Mastcam image’s resolution is first enhanced with three methods: Bicubic interpolation, pansharpening-based method, and a deep learning super resolution method. The enhanced left camera image and the right camera image are then used to estimate the disparity map. The impact of the left camera image enhancement is examined. The comparative performance analyses showed that the left camera enhancement results in getting more accurate disparity maps in comparison to using the original left Mastcam images for disparity map estimation. The deep learning-based method provided the best performance among the three for both image enhancement and disparity map estimation accuracy. A high-resolution disparity map, which is the result of the left camera image enhancement, is anticipated to improve the conducted science products in the Mastcam imagery such as 3D scene reconstructions, depth maps, and anaglyph images.


Author(s):  
V. Gonzalez-Huitron ◽  
E. Ramos-Diaz ◽  
V. Kravchenko ◽  
V. Ponomaryov

Author(s):  
Omer C. Gurol ◽  
Secil Oztürk ◽  
Burak Acar ◽  
Bulent Sankur ◽  
Mehmet Guney

Author(s):  
Sayantan Bhattacharya ◽  
Ilias Bilionis ◽  
Pavlos Vlachos

Non-invasive flow velocity measurement techniques like volumetric Particle Image Velocimetry (PIV) (Elsinga et al., 2006; Adrian and Westerweel, 2011) and Particle Tracking Velocimetry (PTV) (Maas, Gruen and Papantoniou, 1993) use multi-camera projections of tracer particle motion to resolve three-dimensional flow structures. A key step in the measurement chain involves reconstructing the 3D intensity field (PIV) or particle positions (PTV) given the projected images and known camera correspondence. Due to limited number of camera-views the projected particle images are non-unique making the inverse problem of volumetric reconstruction underdetermined. Moreover, higher particle concentration (>0.05 ppp) increases erroneous reconstructions or “ghost” particles and decreases reconstruction accuracy. Current reconstruction methods either use voxel-based representation for intensity reconstruction (e.g. MART (Elsinga et al., 2006)) or a particle-based approach (e.g. IPR (Wieneke, 2013)) for 3D position estimation. The former method is computationally intensive and has a lesser positional accuracy due to stretched shape of the reconstructed particle along the line of sight. The latter compromises triangulation accuracy (Maas, Gruen and Papantoniou, 1993) due to overlapping particle images for higher particle concentrations. Thus, each method has its own challenges and the error in 3D reconstruction significantly affects the accuracy of the velocity measurement. Though, other methods like maximum-a-posteriori (MAP) estimation have been previously developed (Levitan and Herman, 1987; Bouman and Sauer, 1996) for computed Tomography data, it has not been explored for PIV/ PTV 3D reconstruction. Here, we use a MAP estimation framework to model and solve the inverse problem. The cost function is optimized using a stochastic gradient ascent (SGA) algorithm. Such an optimization can converge to a better local maximum and also use smaller image patches for efficient iterations.


Sign in / Sign up

Export Citation Format

Share Document