Rate of Convergence to Poisson Law in Terms of Information Divergence

2004 ◽  
Vol 50 (9) ◽  
pp. 2145-2149 ◽  
Author(s):  
P. Harremoes ◽  
P.S. Ruzankin
2021 ◽  
pp. 109-133
Author(s):  
Sergey G. Bobkov ◽  
Maria A. Danshina ◽  
Vladimir V. Ulyanov

1986 ◽  
Vol 23 (04) ◽  
pp. 1019-1024
Author(s):  
Walter Van Assche

The limit of a product of independent 2 × 2 stochastic matrices is given when the entries of the first column are independent and have the same symmetric beta distribution. The rate of convergence is considered by introducing a stopping time for which asymptotics are given.


Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 880
Author(s):  
Igoris Belovas

In this research, we continue studying limit theorems for combinatorial numbers satisfying a class of triangular arrays. Using the general results of Hwang and Bender, we obtain a constructive proof of the central limit theorem, specifying the rate of convergence to the limiting (normal) distribution, as well as a new proof of the local limit theorem for the numbers of the tribonacci triangle.


2020 ◽  
Vol 20 (4) ◽  
pp. 783-798
Author(s):  
Shukai Du ◽  
Nailin Du

AbstractWe give a factorization formula to least-squares projection schemes, from which new convergence conditions together with formulas estimating the rate of convergence can be derived. We prove that the convergence of the method (including the rate of convergence) can be completely determined by the principal angles between {T^{\dagger}T(X_{n})} and {T^{*}T(X_{n})}, and the principal angles between {X_{n}\cap(\mathcal{N}(T)\cap X_{n})^{\perp}} and {(\mathcal{N}(T)+X_{n})\cap\mathcal{N}(T)^{\perp}}. At the end, we consider several specific cases and examples to further illustrate our theorems.


2021 ◽  
Vol 58 (1) ◽  
pp. 68-82
Author(s):  
Jean-Renaud Pycke

AbstractWe give a new method of proof for a result of D. Pierre-Loti-Viaud and P. Boulongne which can be seen as a generalization of a characterization of Poisson law due to Rényi and Srivastava. We also provide explicit formulas, in terms of Bell polynomials, for the moments of the compound distributions occurring in the extended collective model in non-life insurance.


2021 ◽  
Vol 58 (1) ◽  
pp. 22-41
Author(s):  
Fabian A. Harang ◽  
Marc Lagunas-Merino ◽  
Salvador Ortiz-Latorre

AbstractWe propose a new multifractional stochastic process which allows for self-exciting behavior, similar to what can be seen for example in earthquakes and other self-organizing phenomena. The process can be seen as an extension of a multifractional Brownian motion, where the Hurst function is dependent on the past of the process. We define this by means of a stochastic Volterra equation, and we prove existence and uniqueness of this equation, as well as giving bounds on the p-order moments, for all $p\geq1$. We show convergence of an Euler–Maruyama scheme for the process, and also give the rate of convergence, which is dependent on the self-exciting dynamics of the process. Moreover, we discuss various applications of this process, and give examples of different functions to model self-exciting behavior.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 840
Author(s):  
Maxim Sølund Kirsebom

The Hurwitz complex continued fraction is a generalization of the nearest integer continued fraction. In this paper, we prove various results concerning extremes of the modulus of Hurwitz complex continued fraction digits. This includes a Poisson law and an extreme value law. The results are based on cusp estimates of the invariant measure about which information is still limited. In the process, we obtained several results concerning the extremes of nearest integer continued fractions as well.


Sign in / Sign up

Export Citation Format

Share Document