Link Weight Prediction Using Supervised Learning Methods and Its Application to Yelp Layered Network

2018 ◽  
Vol 30 (8) ◽  
pp. 1507-1518 ◽  
Author(s):  
Chenbo Fu ◽  
Minghao Zhao ◽  
Lu Fan ◽  
Xinyi Chen ◽  
Jinyin Chen ◽  
...  
2021 ◽  
Vol 38 (1) ◽  
pp. 31-41
Author(s):  
Florent Chiaroni ◽  
Mohamed-Cherif Rahal ◽  
Nicolas Hueber ◽  
Frederic Dufaux

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Nasser Assery ◽  
Yuan (Dorothy) Xiaohong ◽  
Qu Xiuli ◽  
Roy Kaushik ◽  
Sultan Almalki

Purpose This study aims to propose an unsupervised learning model to evaluate the credibility of disaster-related Twitter data and present a performance comparison with commonly used supervised machine learning models. Design/methodology/approach First historical tweets on two recent hurricane events are collected via Twitter API. Then a credibility scoring system is implemented in which the tweet features are analyzed to give a credibility score and credibility label to the tweet. After that, supervised machine learning classification is implemented using various classification algorithms and their performances are compared. Findings The proposed unsupervised learning model could enhance the emergency response by providing a fast way to determine the credibility of disaster-related tweets. Additionally, the comparison of the supervised classification models reveals that the Random Forest classifier performs significantly better than the SVM and Logistic Regression classifiers in classifying the credibility of disaster-related tweets. Originality/value In this paper, an unsupervised 10-point scoring model is proposed to evaluate the tweets’ credibility based on the user-based and content-based features. This technique could be used to evaluate the credibility of disaster-related tweets on future hurricanes and would have the potential to enhance emergency response during critical events. The comparative study of different supervised learning methods has revealed effective supervised learning methods for evaluating the credibility of Tweeter data.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3913 ◽  
Author(s):  
Mingxuan Li ◽  
Ou Li ◽  
Guangyi Liu ◽  
Ce Zhang

With the recently explosive growth of deep learning, automatic modulation recognition has undergone rapid development. Most of the newly proposed methods are dependent on large numbers of labeled samples. We are committed to using fewer labeled samples to perform automatic modulation recognition in the cognitive radio domain. Here, a semi-supervised learning method based on adversarial training is proposed which is called signal classifier generative adversarial network. Most of the prior methods based on this technology involve computer vision applications. However, we improve the existing network structure of a generative adversarial network by adding the encoder network and a signal spatial transform module, allowing our framework to address radio signal processing tasks more efficiently. These two technical improvements effectively avoid nonconvergence and mode collapse problems caused by the complexity of the radio signals. The results of simulations show that compared with well-known deep learning methods, our method improves the classification accuracy on a synthetic radio frequency dataset by 0.1% to 12%. In addition, we verify the advantages of our method in a semi-supervised scenario and obtain a significant increase in accuracy compared with traditional semi-supervised learning methods.


2021 ◽  
Vol 11 (19) ◽  
pp. 8872
Author(s):  
Iván G. Torre ◽  
Mónica Romero ◽  
Aitor Álvarez

Automatic speech recognition in patients with aphasia is a challenging task for which studies have been published in a few languages. Reasonably, the systems reported in the literature within this field show significantly lower performance than those focused on transcribing non-pathological clean speech. It is mainly due to the difficulty of recognizing a more unintelligible voice, as well as due to the scarcity of annotated aphasic data. This work is mainly focused on applying novel semi-supervised learning methods to the AphasiaBank dataset in order to deal with these two major issues, reporting improvements for the English language and providing the first benchmark for the Spanish language for which less than one hour of transcribed aphasic speech was used for training. In addition, the influence of reinforcing the training and decoding processes with out-of-domain acoustic and text data is described by using different strategies and configurations to fine-tune the hyperparameters and the final recognition systems. The interesting results obtained encourage extending this technological approach to other languages and scenarios where the scarcity of annotated data to train recognition models is a challenging reality.


Sign in / Sign up

Export Citation Format

Share Document