Does heterogeneity operationalization matter to model the diffusion phenomena

2022 ◽  
Vol 20 (4) ◽  
pp. 599-607
Author(s):  
Lorena Cadavid ◽  
Luisa Fernanda Diez-Echavarria ◽  
Alejandro Valencia-Arias
Keyword(s):  
2020 ◽  
Vol 92 (3) ◽  
pp. 31101
Author(s):  
Zahoor Iqbal ◽  
Masood Khan ◽  
Awais Ahmed

In this study, an effort is made to model the thermal conduction and mass diffusion phenomena in perspective of Buongiorno’s model and Cattaneo-Christov theory for 2D flow of magnetized Burgers nanofluid due to stretching cylinder. Moreover, the impacts of Joule heating and heat source are also included to investigate the heat flow mechanism. Additionally, mass diffusion process in flow of nanofluid is examined by employing the influence of chemical reaction. Mathematical modelling of momentum, heat and mass diffusion equations is carried out in mathematical formulation section of the manuscript. Homotopy analysis method (HAM) in Wolfram Mathematica is utilized to analyze the effects of physical dimensionless constants on flow, temperature and solutal distributions of Burgers nanofluid. Graphical results are depicted and physically justified in results and discussion section. At the end of the manuscript the section of closing remarks is also included to highlight the main findings of this study. It is revealed that an escalation in thermal relaxation time constant leads to ascend the temperature curves of nanofluid. Additionally, depreciation is assessed in mass diffusion process due to escalating amount of thermophoretic force constant.


1999 ◽  
Vol 4 ◽  
pp. 31-86 ◽  
Author(s):  
R. Katilius ◽  
A. Matulionis ◽  
R. Raguotis ◽  
I. Matulionienė

The goal of the paper is to overview contemporary theoretical and experimental research of the microwave electric noise and fluctuations of hot carriers in semiconductors, revealing sensitivity of the noise spectra to non-linearity in the applied electric field strength and, especially, in the carrier density. During the last years, investigation of electronic noise and electron diffusion phenomena in doped semiconductors was in a rapid progress. By combining analytic and Monte Carlo methods as well as the available experimental results on noise, it became possible to obtain the electron diffusion coefficients in the range of electric fields where inter-electron collisions are important and Price’s relation is not necessarily valid. Correspondingly, a special attention to the role of inter-electron collisions and of the non-linearity in the carrier density while shaping electric noise and diffusion phenomena in the non-equilibrium states will be paid. The basic and up-to-date information will be presented on methods and advances in this contemporary field - the field in which methods of non-linear analytic and computational analysis are indispensable while seeking coherent understanding and interpretation of experimental results.


1956 ◽  
Vol 29 (2) ◽  
pp. 137-146 ◽  
Author(s):  
John Buck ◽  
Margaret Keister
Keyword(s):  

Geophysics ◽  
2010 ◽  
Vol 75 (5) ◽  
pp. 75A211-75A227 ◽  
Author(s):  
Kees Wapenaar ◽  
Evert Slob ◽  
Roel Snieder ◽  
Andrew Curtis

In the 1990s, the method of time-reversed acoustics was developed. This method exploits the fact that the acoustic wave equation for a lossless medium is invariant for time reversal. When ultrasonic responses recorded by piezoelectric transducers are reversed in time and fed simultaneously as source signals to the transducers, they focus at the position of the original source, even when the medium is very complex. In seismic interferometry the time-reversed responses are not physically sent into the earth, but they are convolved with other measured responses. The effect is essentially the same: The time-reversed signals focus and create a virtual source which radiates waves into the medium that are subsequently recorded by receivers. A mathematical derivation, based on reciprocity theory, formalizes this principle: The crosscorrelation of responses at two receivers, integrated over differ-ent sources, gives the Green’s function emitted by a virtual source at the position of one of the receivers and observed by the other receiver. This Green’s function representation for seismic interferometry is based on the assumption that the medium is lossless and nonmoving. Recent developments, circumventing these assumptions, include interferometric representations for attenuating and/or moving media, as well as unified representations for waves and diffusion phenomena, bending waves, quantum mechanical scattering, potential fields, elastodynamic, electromagnetic, poroelastic, and electroseismic waves. Significant improvements in the quality of the retrieved Green’s functions have been obtained with interferometry by deconvolution. A trace-by-trace deconvolution process compensates for complex source functions and the attenuation of the medium. Interferometry by multidimensional deconvolution also compensates for the effects of one-sided and/or irregular illumination.


2010 ◽  
Vol 297-301 ◽  
pp. 1346-1353
Author(s):  
Odila Florêncio ◽  
Paulo Sergio Silva ◽  
Carlos Roberto Grandini

The short-range diffusion phenomenon (Snoek Effect) was investigated by mechanical spectroscopy measurements between 300 K and 650 K, in a polycrystalline niobium sample, containing oxygen and nitrogen, using a torsion pendulum. Experimental spectra of anelastic relaxation were obtained under three conditions: as-received sample; annealed sample and subsequently annealed in an oxygen atmosphere for three hours at 1170 K in partial pressure of 5x10-5mbar. The experimental spectra obtained were decomposed in elementary Debye peaks and the anelastic relaxation processes were identified. With anelastic relaxation parameters and the lattice parameters, the interstitial diffusion coefficients of the oxygen and nitrogen in niobium were calculated for each kind of preferential occupation (octahedral and tetrahedral). The results were compared with the literature data, and confirmed that the best adjustment is for the preferential occupation octahedral model for low concentrations of interstitial solutes, but at higher concentration of oxygen were observed deviations of experimental data for the interstitial diffusion coefficients of oxygen in niobium when compared with the literature data, this could be related to the possible occurrence of a double occupation of interstitial sites in the niobium lattice by oxygen interstitials.


1996 ◽  
Vol 118 (4) ◽  
pp. 639-645 ◽  
Author(s):  
C. B. Park ◽  
N. P. Suh

An extrusion system that can create a polymer/gas solution rapidly for continuous processing of microcellular plastics is presented. Microcellular plastics are characterized by cell densities greater than 109 cells/cm3 and fully grown cells smaller than 10 μm. Previously these microcellular structures have been produced in a batch process by saturating a polymeric material with an inert gas under high pressure followed by inducing a rapid drop in the gas solubility. The diffusion phenomena encountered in this batch processing is typically slow, resulting in long cycle times. In order to produce microcellular plastics at industrial production rates, a means for the rapid solution formation is developed. The processing time required for completing the solution formation in the system was estimated from experimental data and the dispersive mixing theory based on an order-of-magnitude analysis. A means for promoting high bubble nucleation rates in the gas-saturated polymer via rapid heating is also discussed. The feasibility of the continuous production of microcellular plastics by the rapid polymer/gas solution formation and rapid heating was demonstrated through experiments. The paper includes not only a brief treatment of the basic science of the polymer/gas systems, but also the development of an industrially viable technology that fully utilizes the unique properties of microcellular plastics.


Sign in / Sign up

Export Citation Format

Share Document