A Closed-Form Formula for Magnetic Dipole Localization by Measurement of Its Magnetic Field and Spatial Gradients

2006 ◽  
Vol 42 (10) ◽  
pp. 3291-3293 ◽  
Author(s):  
T. Nara ◽  
S. Suzuki ◽  
S. Ando
Geophysics ◽  
2017 ◽  
Vol 82 (6) ◽  
pp. WB21-WB28 ◽  
Author(s):  
Zhengyong Ren ◽  
Chaojian Chen ◽  
Jingtian Tang ◽  
Huang Chen ◽  
Shuanggui Hu ◽  
...  

A closed-form formula is developed for the full magnetic gradient tensor of a polyhedral body with a homogeneous magnetization vector. It is based on the direct derivative technique on the closed form of the magnetic field. These analytical expressions are implemented into an easy-to-use C++ package which simultaneously calculates the magnetic potential, the magnetic field, and the full magnetic gradient tensor for magnetic targets. Modern unstructured tetrahedral grids are adopted to represent the polyhedral body so that our code can deal with arbitrarily complicated magnetic targets. A prismatic body is tested to verify the accuracies of our closed-form formula. Excellent agreements are obtained between our closed-form solutions and solutions of a prismatic magnetic body with differences up to machine precision. A pipeline model is used to demonstrate its capability to deal with complicated magnetic targets. This C++ code is freely available to the magnetic exploration community.


2017 ◽  
pp. 1-1 ◽  
Author(s):  
Liming Fan ◽  
Xiyuan Kang ◽  
Quan Zheng ◽  
Xiaojun Zhang ◽  
Xuejun Liu ◽  
...  

2021 ◽  
pp. 1-11
Author(s):  
Alfred Galichon

In this paper, we give a two-line proof of a long-standing conjecture of Ben-Akiva in his 1973 PhD thesis regarding the random utility representation of the nested logit model, thus providing a renewed and straightforward textbook treatment of that model. As an application, we provide a closed-form formula for the correlation between two Fréchet random variables coupled by a Gumbel copula.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Diego R. Abujetas ◽  
Nuno de Sousa ◽  
Antonio García-Martín ◽  
José M. Llorens ◽  
José A. Sánchez-Gil

Abstract Bound states in the continuum (BICs) emerge throughout physics as leaky/resonant modes that remain, however, highly localized. They have attracted much attention in photonics, and especially in metasurfaces. One of their most outstanding features is their divergent Q-factors, indeed arbitrarily large upon approaching the BIC condition (quasi-BICs). Here, we investigate how to tune quasi-BICs in magneto-optic (MO) all-dielectric metasurfaces. The impact of the applied magnetic field in the BIC parameter space is revealed for a metasurface consisting of lossless semiconductor spheres with MO response. Through our coupled electric/magnetic dipole formulation, the MO activity is found to manifest itself through the interference of the out-of-plane electric/magnetic dipole resonances with the (MO-induced) in-plane magnetic/electric dipole, leading to a rich, magnetically tuned quasi-BIC phenomenology, resembling the behavior of Brewster quasi-BICs for tilted vertical-dipole resonant metasurfaces. Such resemblance underlies our proposed design for a fast MO switch of a Brewster quasi-BIC by simply reversing the driving magnetic field. This MO-active BIC behavior is further confirmed in the optical regime for a realistic Bi:YIG nanodisk metasurface through numerical calculations. Our results present various mechanisms to magneto-optically manipulate BICs and quasi-BICs, which could be exploited throughout the electromagnetic spectrum with applications in lasing, filtering, and sensing.


Sign in / Sign up

Export Citation Format

Share Document