A Dual Notched Design of Radial-Flux Permanent Magnet Motors with Low Cogging Torque and Rare Earth Material

2014 ◽  
Vol 50 (11) ◽  
pp. 1-4 ◽  
Author(s):  
Hsing-Cheng Yu ◽  
Bo-Syun Yu ◽  
Jen-te Yu ◽  
Cheng-Kai Lin
2011 ◽  
Vol 58 (9) ◽  
pp. 3741-3757 ◽  
Author(s):  
David G. Dorrell ◽  
Min-Fu Hsieh ◽  
Mircea Popescu ◽  
Lyndon Evans ◽  
David A. Staton ◽  
...  

2013 ◽  
Vol 479-480 ◽  
pp. 427-430
Author(s):  
Hsing Cheng Yu ◽  
Bo Syun Yu

Permanent magnet (PM) brushless DC motors (BLDCMs) are widely applied in industrial drives. However, the price rising of rare earth resource resulted in country policy restriction, so it is detrimental for mass production of PM-BLDCMs. As a result, the design and manufacture tendency of PM-BLDCMs are smaller and slighter in adopting rare earth materials of PMs. Additional, the magnetic flux density of PMs are difficult to improve in the near future. The effective method is to decrease stator reluctance and to adjust magnetic flux distribution of the air gap in stator design. Hence, the surface permanent magnets (SPMs) and tooth surface stators (TSSs) are designed to improve the motor performance, and are calculated by finite-element analysis (FEA) software in this study. Various hemicycle groove microstructures of SPMs and TSSs for designing, analyzing and optimizing are considered to observe the magnetic field strength distribution and to reduce the cogging torque in PM-BLDCMs, and the FEA result can be regarded as important references of motor structure design. The cogging torque can be reduced 80.9% in SPM3-model and can be decayed 89.2% in TSS2-model versus original model separately, and the cogging torque of the optimal combination of SPM-BLDCM can be abated 62.4%. Furthermore, the usage amount of rare earth material volume in designed SPM-BLDCMs can be reduced 5.3% in average. Finally, a prototype of the SPM- BLDCM has been constructed to prove the simulation design.


Author(s):  
Vicente Simon-Sempere ◽  
Auxiliadora Simon-Gomez ◽  
Manuel Burgos ◽  
Jose-Ramon Cerquides-Bueno

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2311
Author(s):  
Mudassir Raza Siddiqi ◽  
Tanveer Yazdan ◽  
Jun-Hyuk Im ◽  
Muhammad Humza ◽  
Jin Hur

This paper presents a novel topology of dual airgap radial flux permanent magnet vernier machine (PMVM) in order to obtain a higher torque per magnet volume and similar average torque compared to a conventional PMVM machine. The proposed machine contains two stators and a sandwiched yokeless rotor. The yokeless rotor helps to reduce the magnet volume by providing an effective flux linkage in the stator windings. This effective flux linkage improved the average torque of the proposed machine. The competitiveness of the proposed vernier machine was validated using 2D finite element analysis under the same machine volume as that of conventional vernier machine. Moreover, cogging torque, torque ripples, torque density, losses, and efficiency performances also favored the proposed topology.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8058
Author(s):  
Chaelim Jeong ◽  
Luca Cinti ◽  
Nicola Bianchi

This paper deals with the possibility to replace rare-earth permanent magnet (PM) motors in direct drive applications. According to previous researches, there are alternatives such as surface-mounted PM motors and spoke-type motors adopting Ferrite PMs, synchronous reluctance motors, with or without the assistance of low-energy PMs. Few studies have been carried out to compare all models at once, thus it is hard to choose which type motor is to be preferred as a valid alternative of rare-earth PM motors in direct drive applications. In this paper, the representative candidates listed above are analyzed and the results are compared with that of a rare-earth PM motor, which is considered as a reference motor. Additionally, the demagnetization phenomenon of the motors with Ferrite PMs is deeply analyzed because this kind of PM may be easily demagnetized by the stator flux. Finally, both strengths and weaknesses of each alternative motors are highlighted.


Sign in / Sign up

Export Citation Format

Share Document