Modeling for the Electromagnetic Dynamic Distortion Effect of the Induction-based Electrodynamic Suspension Reaction Spheres

2021 ◽  
pp. 1-1
Author(s):  
Zhouyu Huai ◽  
Ming Zhang ◽  
Yu Zhu ◽  
Anlin Chen ◽  
Kaiming Yang
Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 775-783 ◽  
Author(s):  
Renée LeMaire-Adkins ◽  
Patricia A Hunt

Abstract A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in ∼60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Wei Liu ◽  
Jian Tong ◽  
Xiaohang Yue

The difference of factor input structure determines different response to environmental regulation. This paper constructs a theoretical model including environmental regulation, factor input structure, and industrial transformation and conducts a policy simulation based on the difference of influencing mechanism of environmental regulation considering industrial heterogeneity. The findings show that the impact of environmental regulation on industrial transformation presents comparison of distortion effect of resource allocation and technology effect. Environmental regulation will promote industrial transformation when technology effect of environmental regulation is stronger than distortion effect of resource allocation. Particularly, command-control environmental regulation has a significant incentive effect and spillover effect of technological innovation on cleaning industries, but these effects do not exist in pollution-intensive industries. Command-control environmental regulation promotes industrial transformation. The result of simulation showed that environmental regulation of market incentives is similar to that of command-control.


2004 ◽  
Vol 16 (48) ◽  
pp. S5815-S5818 ◽  
Author(s):  
Keita Yamana ◽  
Masaaki Geshi ◽  
Hidekazu Tsukamoto ◽  
Ichiro Uchida ◽  
Masafumi Shirai ◽  
...  

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2183 ◽  
Author(s):  
Dionisis Voglitsis ◽  
Fotis Valsamas ◽  
Nick Rigogiannis ◽  
Nick Papanikolaou

Active anti-islanding schemes that are based on the injection of harmonic currents, such as the measurement of the impedance at a specific frequency or similar techniques, have been proposed for anti-islanding protection in photovoltaic (PV) systems due to their low impact on inverter active power, their fast detection response in island, and reduced non-detection zone (NDZ). Integer multiples of the fundamental frequency as well as sub/inter-harmonics have both been used for the implementation of those schemes. Although utilization of sub/inter-harmonics present significant advantages, they also present significant limitations. This work investigates those limitations, particularly the ones that are caused by the parallel operation of multiple inverters. In addition, the distortion effect that is caused in the output current of the widely used PV microinverters with pseudo dc-link (PV Pdc-MICs) is discussed and thoroughly analyzed. It is concluded that when the injection is performed asynchronously (without communication among the inverters) sub/inter-harmonics are unsuitable for utilization under the parallel operation of multiple inverters. It is worth noting that a strategy is proposed in the current work that retains the effectiveness of the harmonic injection scheme under the injection of integer multiples of fundamental frequency. On the other hand, the distortion effect that is caused by the sub/inter-harmonics on PV Pdc-MICs output current, has been evaluated as insignificant when harmonics are used for anti-islanding purposes. Finally, the theoretical/mathematical outcomes of this work are supported by simulation and experimental results.


Author(s):  
Keith C. Afas

This paper puts forward an alteration for Tensor Calculus utliized in a coordinate system which is under a dynamic distortion drawing inspiration from similar fields such as the Calculus of Moving Surfaces (CMS). The paper establishes transformation laws for Tensors within these regions and establishes Operators such as the Tensorial Field Derivative which enforce a Tensorial Transformation on Tensors defined within a Dynamically Moving coordinate system. This variation of Tensor Calculus can be utilized to observe how disciplines such as QFT and Continuum Mechanics would change to accomodate for a distorting coordinate system and can be utliized to develop new theoretical models which account for this temporal distortion particularly within Biological Settings.


Sign in / Sign up

Export Citation Format

Share Document