A Novel Combination of Kernel Radial Basis Function and Finite Element Methods for 2-D Time-Harmonic Eddy Current Problems

2021 ◽  
pp. 1-1
Author(s):  
Ngoc-Khoa Nguyen ◽  
Phan-Tu Vu
2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Wei Liu ◽  
Feifan Wang ◽  
Xiawei Yang ◽  
Wenya Li

This paper addresses the upset prediction problem of friction welded joints. Based on finite element simulations of inertia friction welding (IFW), a radial basis function (RBF) neural network was developed initially to predict the final upset for a number of welding parameters. The predicted joint upset by the RBF neural network was compared to validated finite element simulations, producing an error of less than 8.16% which is reasonable. Furthermore, the effects of initial rotational speed and axial pressure on the upset were investigated in relation to energy conversion with the RBF neural network. The developed RBF neural network was also applied to linear friction welding (LFW) and continuous drive friction welding (CDFW). The correlation coefficients of RBF prediction for LFW and CDFW were 0.963 and 0.998, respectively, which further suggest that an RBF neural network is an effective method for upset prediction of friction welded joints.


Author(s):  
Sedat Ozcanan ◽  
Ali Osman Atahan

For guardrail designers, it is essential to achieve a crashworthy and optimal system design. One of the most critical parameters for an optimal road restraint system is the post embedment depth or the post-to-soil interaction. This study aims to assess the optimum post embedment depth values of three different guardrail posts embedded in soil with varying density. Posts were subjected to dynamic impact loads in the field while a detailed finite element study was performed to construct accurate models for the post–soil interaction. It is well-known that experimental tests and simulations are costly and time-consuming. Therefore, to reduce the computational cost of optimization, radial basis function–based metamodeling methodology was employed to create surrogate models that were used to replace the expensive three-dimensional finite element models. In order to establish the radial basis function model, samples were derived using the full factorial design. Afterward, radial basis function–based metamodels were generated from the derived data and objective functions performed using finite element analysis. The accuracy of the metamodels were validated by k-fold cross-validation, then optimized using multi-objective genetic algorithm. After optimum embedment depths were obtained, finite element simulations of the results were compared with full-scale crash test results. In comparison with the actual post embedment depths, optimal post embedment depths provided significant economic advantages without compromising safety and crashworthiness. It is concluded that the optimum post embedment depths provide an economic advantage of up to 17.89%, 36.75%, and 43.09% for C, S, and H types of post, respectively, when compared to actual post embedment depths.


Author(s):  
Kaveh Amouzgar ◽  
Asim Rashid ◽  
Niclas Stromberg

Many engineering design optimization problems involve multiple conflicting objectives, which today often are obtained by computational expensive finite element simulations. Evolutionary multi-objective optimization (EMO) methods based on surrogate modeling is one approach of solving this class of problems. In this paper, multi-objective optimization of a disc brake system to a heavy truck by using EMO and radial basis function networks (RBFN) is presented. Three conflicting objectives are considered. These are: 1) minimizing the maximum temperature of the disc brake, 2) maximizing the brake energy of the system and 3) minimizing the mass of the back plate of the brake pad. An iterative Latin hypercube sampling method is used to construct the design of experiments (DoE) for the design variables. Next, thermo-mechanical finite element analysis of the disc brake, including frictional heating between the pad and the disc, is performed in order to determine the values of the first two objectives for the DoE. Surrogate models for the maximum temperature and the brake energy are created using RBFN with polynomial biases. Different radial basis functions are compared using statistical errors and cross validation errors (PRESS) to evaluate the accuracy of the surrogate models and to select the most accurate radial basis function. The multi-objective optimization problem is then solved by employing EMO using the strength Pareto evolutionary algorithm (SPEA2). Finally, the Pareto fronts generated by the proposed methodology are presented and discussed.


2013 ◽  
Vol 423-426 ◽  
pp. 955-961
Author(s):  
Li Feng Fan ◽  
Ying Gao ◽  
Jia Xin Yan ◽  
Jian Bin Yun

Crimping is widely used in production of large diameter submerged-arc welding pipes. Traditionally, the designers obtain the technical parameters for crimping from experience or trial-errors by experiments. However, it is difficult to obtain the ideal crimping technical parameters with this method immediately at present. To tackle this problem, a new method coupled with response surface methodology and finite element method is proposed to design crimping technical parameters and save the design time of crimping. In this paper, the crimping forming process is simulated by finite element (FE) code ABAQUS. Taking the crimping of X80 steel Φ1219mm×22mm×12000mm welding pipe for instance, the simulation data from the arrangement of simulation which is constituted by the optimal latin hyper-cube sampling approach is treated as sample point. Four types of response surface methodology which included four-order polynomial function, orthogonal polynomial function, kriging and radial basis function is discussed, where the response surface model based on radial basis function is proved more efficient than other types of response surface methodology to construct surrogate model. The results showed a good agreement by a comparison with simulation results and remarkably predicted the crimping quality. Thus, the presented method of this research provides an effective path to design crimping parameters.


Sign in / Sign up

Export Citation Format

Share Document