Diffusion Equation Model for Kilovolt Electron Transport at X-Irradiated Interfaces

1978 ◽  
Vol 25 (6) ◽  
pp. 1598-1606 ◽  
Author(s):  
J. C. Garth
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
R. S. Damor ◽  
Sushil Kumar ◽  
A. K. Shukla

Phase change problems play very important role in engineering sciences including casting of nuclear waste materials, vivo freezing of biological tissues, solar collectors and so forth. In present paper, we propose fractional diffusion equation model for alloy solidification. A transient heat transfer analysis is carried out to study the anomalous diffusion. Finite difference method is used to solve the fractional differential equation model. The temperature profiles, the motion of interface, and interface velocity have been evaluated for space fractional diffusion equation.


2021 ◽  
Vol 263 (1) ◽  
pp. 5637-5642
Author(s):  
Ryan Hao ◽  
Ning Xiang

Noise is a growing concern in the built environment. Sound absorbers are a viable option for noise treatment. However, the characterization of their absorption coefficient in standardized measurement chambers still show challenges for high accuracy as required in practice. In recent years, experimental analysis has shown that assumptions of diffuse sound fields made in well-known reverberation chambers are unfulfilled. Specifically, that sound intensities in chamber-based measurement methods are presumed to be isotropic or diffuse. Diffusion equation models have shown dramatic changes in energy flow in the presence of highly absorptive materials under test. This has been attributed to well-documented inconsistencies reported from reverberation chamber measurements across different laboratories. This work will demonstrate that the diffusion equation model is proving to be a computationally efficient and viable method for predicting sound energy flows, garnering an increasing amount of interest from the acoustical community.


2010 ◽  
Vol 127 (3) ◽  
pp. 2002-2002
Author(s):  
José Escolano ◽  
Juan M. Navarro ◽  
José J. López ◽  
Ning Xiang

Sign in / Sign up

Export Citation Format

Share Document