Three-Dimensional Shape Description Using the Symmetric Axis Transform I: Theory

1985 ◽  
Vol PAMI-7 (2) ◽  
pp. 187-202 ◽  
Author(s):  
Lee R. Nackman ◽  
Stephen M. Pizer
2011 ◽  
Vol 1 (1) ◽  
Author(s):  
Dariusz Frejlichowski

AbstractInterest in three-dimensional shape retrieval is currently increasing, driven by two important reasons — the rapid increase of the amount of multimedia data and a noticeable advance in computer hardware and software during recent years. Presently, it is possible to retrieve complicated 3D models in a reasonable span of time thanks to the use of sophisticated 3D shape description algorithms, a feat which was unthinkable a few years ago. The main issue is the efficiency of the approaches, which must work both quickly and reliably. Hence, in this paper four 3D shape description algorithms — Extended Gaussian Image, Shape Distributions, Shape Histograms and Light Field Descriptor — were experimentally compared in order to determine which was most effective. As it turned out, the latter obtained the best retrieval result.


2006 ◽  
Vol 37 (4) ◽  
pp. 583
Author(s):  
Michael McGowan

This article examines the relatively new fields of colour and shape trade marks. It was initially feared by some academics that the new marks would encroach on the realms of patent and copyright.  However, the traditional requirements of trade mark law, such as functionality and descriptiveness, have meant that trade marks in colour and shape are extremely hard to acquire if they do not have factual distinctiveness. As colour and shape trade marks have no special restrictions, it is proposed that the combination trade mark theory and analysis from the Diamond T case should be used as a way to make them more accessible. The combination analysis can be easily applied because every product has a three dimensional shape and a fourth dimension of colour.


2017 ◽  
Author(s):  
Tatsuya Kitamura ◽  
Hironori Takemoto ◽  
Hisanori Makinae ◽  
Tetsutaro Yamaguchi ◽  
Kotaro Maki

i-Perception ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 204166952098231
Author(s):  
Masakazu Ohara ◽  
Juno Kim ◽  
Kowa Koida

Perceiving the shape of three-dimensional objects is essential for interacting with them in daily life. If objects are constructed from different materials, can the human visual system accurately estimate their three-dimensional shape? We varied the thickness, motion, opacity, and specularity of globally convex objects rendered in a photorealistic environment. These objects were presented under either dynamic or static viewing condition. Observers rated the overall convexity of these objects along the depth axis. Our results show that observers perceived solid transparent objects as flatter than the same objects rendered with opaque reflectance properties. Regional variation in local root-mean-square image contrast was shown to provide information that is predictive of perceived surface convexity.


Sign in / Sign up

Export Citation Format

Share Document