A Learning Algorithm for Bayesian Networks and Its Efficient Implementation on GPUs

2016 ◽  
Vol 27 (1) ◽  
pp. 17-30 ◽  
Author(s):  
Yu Wang ◽  
Weikang Qian ◽  
Shuchang Zhang ◽  
Xiaoyao Liang ◽  
Bo Yuan
2016 ◽  
Vol 57 ◽  
pp. 1-37 ◽  
Author(s):  
Simone Villa ◽  
Fabio Stella

Non-stationary continuous time Bayesian networks are introduced. They allow the parents set of each node to change over continuous time. Three settings are developed for learning non-stationary continuous time Bayesian networks from data: known transition times, known number of epochs and unknown number of epochs. A score function for each setting is derived and the corresponding learning algorithm is developed. A set of numerical experiments on synthetic data is used to compare the effectiveness of non-stationary continuous time Bayesian networks to that of non-stationary dynamic Bayesian networks. Furthermore, the performance achieved by non-stationary continuous time Bayesian networks is compared to that achieved by state-of-the-art algorithms on four real-world datasets, namely drosophila, saccharomyces cerevisiae, songbird and macroeconomics.


2018 ◽  
Vol 16 (1) ◽  
pp. 1022-1036
Author(s):  
Jingyun Wang ◽  
Sanyang Liu

AbstractThe problem of structures learning in Bayesian networks is to discover a directed acyclic graph that in some sense is the best representation of the given database. Score-based learning algorithm is one of the important structure learning methods used to construct the Bayesian networks. These algorithms are implemented by using some heuristic search strategies to maximize the score of each candidate Bayesian network. In this paper, a bi-velocity discrete particle swarm optimization with mutation operator algorithm is proposed to learn Bayesian networks. The mutation strategy in proposed algorithm can efficiently prevent premature convergence and enhance the exploration capability of the population. We test the proposed algorithm on databases sampled from three well-known benchmark networks, and compare with other algorithms. The experimental results demonstrate the superiority of the proposed algorithm in learning Bayesian networks.


Author(s):  
Sotiris Kotsiantis ◽  
Dimitris Kanellopoulos ◽  
Panayotis Pintelas

In classification learning, the learning scheme is presented with a set of classified examples from which it is expected tone can learn a way of classifying unseen examples (see Table 1). Formally, the problem can be stated as follows: Given training data {(x1, y1)…(xn, yn)}, produce a classifier h: X- >Y that maps an object x ? X to its classification label y ? Y. A large number of classification techniques have been developed based on artificial intelligence (logic-based techniques, perception-based techniques) and statistics (Bayesian networks, instance-based techniques). No single learning algorithm can uniformly outperform other algorithms over all data sets. The concept of combining classifiers is proposed as a new direction for the improvement of the performance of individual machine learning algorithms. Numerous methods have been suggested for the creation of ensembles of classi- fiers (Dietterich, 2000). Although, or perhaps because, many methods of ensemble creation have been proposed, there is as yet no clear picture of which method is best.


Sign in / Sign up

Export Citation Format

Share Document