High-Performance Voltage Regulation of Current Source Inverters

2011 ◽  
Vol 26 (9) ◽  
pp. 2439-2448 ◽  
Author(s):  
Sorrell Alistair Shield Grogan ◽  
Donald Grahame Holmes ◽  
Brendan Peter McGrath
IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 813-826
Author(s):  
Farid Uddin Ahmed ◽  
Zarin Tasnim Sandhie ◽  
Liaquat Ali ◽  
Masud H. Chowdhury

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4220
Author(s):  
Dai Orihara ◽  
Hiroshi Kikusato ◽  
Jun Hashimoto ◽  
Kenji Otani ◽  
Takahiro Takamatsu ◽  
...  

Inertia reduction due to inverter-based resource (IBR) penetration deteriorates power system stability, which can be addressed using virtual inertia (VI) control. There are two types of implementation methods for VI control: grid-following (GFL) and grid-forming (GFM). There is an apparent difference among them for the voltage regulation capability, because the GFM controls IBR to act as a voltage source and GFL controls it to act as a current source. The difference affects the performance of the VI control function, because stable voltage conditions help the inertial response to contribute to system stability. However, GFL can provide the voltage control function with reactive power controllability, and it can be activated simultaneously with the VI control function. This study analyzes the performance of GFL-type VI control with a voltage control function for frequency stability improvement. The results show that the voltage control function decreases the voltage variation caused by the fault, improving the responsivity of the VI function. In addition, it is found that the voltage control is effective in suppressing the power swing among synchronous generators. The clarification of the contribution of the voltage control function to the performance of the VI control is novelty of this paper.


Sign in / Sign up

Export Citation Format

Share Document