A High-Efficiency Charger With Adaptive Input Ripple MPPT for Low-Power Thermoelectric Energy Harvesting Achieving 21% Efficiency Improvement

2020 ◽  
Vol 35 (1) ◽  
pp. 347-358 ◽  
Author(s):  
Junwon Jeong ◽  
Minseob Shim ◽  
Junyoung Maeng ◽  
Inho Park ◽  
Chulwoo Kim
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6297
Author(s):  
Patricia I. Dolez

A major challenge with current wearable electronics and e-textiles, including sensors, is power supply. As an alternative to batteries, energy can be harvested from various sources using garments or other textile products as a substrate. Four different energy-harvesting mechanisms relevant to smart textiles are described in this review. Photovoltaic energy harvesting technologies relevant to textile applications include the use of high efficiency flexible inorganic films, printable organic films, dye-sensitized solar cells, and photovoltaic fibers and filaments. In terms of piezoelectric systems, this article covers polymers, composites/nanocomposites, and piezoelectric nanogenerators. The latest developments for textile triboelectric energy harvesting comprise films/coatings, fibers/textiles, and triboelectric nanogenerators. Finally, thermoelectric energy harvesting applied to textiles can rely on inorganic and organic thermoelectric modules. The article ends with perspectives on the current challenges and possible strategies for further progress.


Micromachines ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 359 ◽  
Author(s):  
Dahoon Ahn ◽  
Kyungwho Choi

During rolling stock operation, various kinds of energy such as vibration, heat, and train-induced wind are dissipated. The amount of energy dissipation cannot be overlooked when a heavy railroad vehicle operates at high speed. Therefore, if the wasted energy is effectively harvested, it can be used to power components like low power sensor nodes. This study aims to review a method of collecting waste heat, caused by the axle bearing of bogie in a rolling stock. A thermoelectric module (TEM) was used to convert the temperature gradient between the surface of the axle bearing housing and the outdoor air into electric energy. In this study, the output performance by temperature difference in the TEM was lab-tested and maximized by computational fluid analysis of the cooling fins. The optimized thermoelectric energy harvesting system (TEHS) was designed and applied on a rolling stock to analyze the power-generating performance under operation. When the rolling stock was operated for approximately 57 min including an interval of maximum speed of 300 km/h, the maximum open circuit voltage was measured at approximately 0.4 V. Based on this study, the system is expected to be utilized as a self-powered independent monitoring system if applied to a low-power sensor node in the future.


Sign in / Sign up

Export Citation Format

Share Document