Multi-variable Modulation based Conduction Loss Minimization in a Triple Active Bridge Converter

Author(s):  
Saikat Dey ◽  
Ayan Mallik
Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1973
Author(s):  
Pavel Skarolek ◽  
Filipp Frolov ◽  
Ondrej Lipcak ◽  
Jiri Lettl

Gallium nitride (GaN) devices are becoming more popular in power semiconductor converters. Due to the absence of the freewheeling substrate diode, the reverse conduction region is used in GaN transistors to conduct the freewheeling current. However, the voltage drop across the device in the reverse conduction mode is relatively high, causing additional power losses. These losses can be optimized by adequately adjusting the dead-time issued by the microcontroller. The dead-time loss minimization strategies presented in the literature have the common disadvantage that either additional hardware or specific converter data are needed for their proper operation. Therefore, this paper’s motivation is to present a novel dead-time loss minimization method for GaN-based high-frequency switching converters for electric drives that does not impose additional requirements on the hardware design phase and converter data acquisition. The method is based on optimizing the current controllers’ output with a simple perturb-and-observe tracker. The experimental results show that the proposed approach can minimize the dead-time losses over the whole drive’s operating range at the cost of only a moderate increase in software complexity.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1756
Author(s):  
Gang Wang ◽  
Qiyu Hu ◽  
Chunyu Xu ◽  
Bin Zhao ◽  
Xiaobao Su

This paper proposes an integrated magnetic structure for a CLLC resonant converter. With the proposed integrated magnetic structure, two resonant inductances and the transformer are integrated into one magnetic core, which improves the power density of the CLLC resonant converter. In the proposed integrated magnetic structure, two resonant inductances are decoupled with the transformer and can be adjusted by the number of turns in each inductance. Furthermore, two resonant inductances are coupled to reduce the number of turns in each inductance. As a result, the conduction loss can be reduced. The trade-off design of the integrated magnetic structure is carried out based on the Pareto optimization procedure. With the Pareto optimization procedure, both high efficiency and high-power density can be achieved. The proposed integrated magnetic structure is validated by theoretical analysis, simulations, and experiments.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Guolong Sang ◽  
Pei Xu ◽  
Tong Yan ◽  
Vignesh Murugadoss ◽  
Nithesh Naik ◽  
...  

Abstract Lightweight microcellular polyurethane (TPU)/carbon nanotubes (CNTs)/ nickel-coated CNTs (Ni@CNTs)/polymerizable ionic liquid copolymer (PIL) composite foams are prepared by non-solvent induced phase separation (NIPS). CNTs and Ni@CNTs modified by PIL provide more heterogeneous nucleation sites and inhibit the aggregation and combination of microcellular structure. Compared with TPU/CNTs, the TPU/CNTs/PIL and TPU/CNTs/Ni@CNTs/PIL composite foams with smaller microcellular structures have a high electromagnetic interference shielding effectiveness (EMI SE). The evaporate time regulates the microcellular structure, improves the conductive network of composite foams and reduces the microcellular size, which strengthens the multiple reflections of electromagnetic wave. The TPU/10CNTs/10Ni@CNTs/PIL foam exhibits slightly higher SE values (69.9 dB) compared with TPU/20CNTs/PIL foam (53.3 dB). The highest specific EMI SE of TPU/20CNTs/PIL and TPU/10CNTs/10Ni@CNTs/PIL reaches up to 187.2 and 211.5 dB/(g cm−3), respectively. The polarization losses caused by interfacial polarization between TPU substrates and conductive fillers, conduction loss caused by conductive network of fillers and magnetic loss caused by Ni@CNT synergistically attenuate the microwave energy.


Sign in / Sign up

Export Citation Format

Share Document