scholarly journals Uncertainty Tracing of Distributed Generations via Complex Affine Arithmetic Based Unbalanced Three-Phase Power Flow

2015 ◽  
Vol 30 (6) ◽  
pp. 3053-3062 ◽  
Author(s):  
Shouxiang Wang ◽  
Liang Han ◽  
Lei Wu
Author(s):  
John Penaloza Moran ◽  
Julio C. Lopez ◽  
Antonio Padilha Feltrin

2022 ◽  
Vol 8 ◽  
pp. 1438-1447
Author(s):  
Hao Bai ◽  
Xueyong Tang ◽  
Zhiyong Yuan ◽  
Qingsheng Li ◽  
Shuhui Pan ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2702
Author(s):  
Xiaojun Zhao ◽  
Xiuhui Chai ◽  
Xiaoqiang Guo ◽  
Ahmad Waseem ◽  
Xiaohuan Wang ◽  
...  

Different from the extant power flow analysis methods, this paper discusses the power flows for the unified power quality conditioner (UPQC) in three-phase four-wire systems from the point of view of impedance matching. To this end, combined with the designed control strategies, the establishing method of the UPQC impedance model is presented, and on this basis, the UPQC system can be equivalent to an adjustable impedance model. After that, a concept of impedance matching is introduced into this impedance model to study the operation principle for the UPQC system, i.e., how the system changes its operation states and power flow under the grid voltage variations through discussing the matching relationships among node impedances. In this way, the nodes of the series and parallel converter are matched into two sets of impedances in opposite directions, which mean that one converter operates in rectifier state to draw the energy and the other one operates in inverter state to transmit the energy. Consequently, no matter what grid voltages change, the system node impedances are dynamically matched to ensure that output equivalent impedances are always equal to load impedances, so as to realize impedance and power balances of the UPQC system. Finally, the correctness of the impedance matching-based power flow analysis is validated by the experimental results.


Computation ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 80
Author(s):  
John Fernando Martínez-Gil ◽  
Nicolas Alejandro Moyano-García ◽  
Oscar Danilo Montoya ◽  
Jorge Alexander Alarcon-Villamil

In this study, a new methodology is proposed to perform optimal selection of conductors in three-phase distribution networks through a discrete version of the metaheuristic method of vortex search. To represent the problem, a single-objective mathematical model with a mixed-integer nonlinear programming (MINLP) structure is used. As an objective function, minimization of the investment costs in conductors together with the technical losses of the network for a study period of one year is considered. Additionally, the model will be implemented in balanced and unbalanced test systems and with variations in the connection of their loads, i.e., Δ− and Y−connections. To evaluate the costs of the energy losses, a classical backward/forward three-phase power-flow method is implemented. Two test systems used in the specialized literature were employed, which comprise 8 and 27 nodes with radial structures in medium voltage levels. All computational implementations were developed in the MATLAB programming environment, and all results were evaluated in DigSILENT software to verify the effectiveness and the proposed three-phase unbalanced power-flow method. Comparative analyses with classical and Chu & Beasley genetic algorithms, tabu search algorithm, and exact MINLP approaches demonstrate the efficiency of the proposed optimization approach regarding the final value of the objective function.


Sign in / Sign up

Export Citation Format

Share Document