Modeling of Type 3 Wind Turbines With df/dt Inertia Control for System Frequency Response Study

2017 ◽  
Vol 32 (4) ◽  
pp. 2799-2809 ◽  
Author(s):  
Jiabing Hu ◽  
Li Sun ◽  
Xiaoming Yuan ◽  
Shuo Wang ◽  
Yongning Chi
Author(s):  
Lei Shang

With the rapid development of wind power generations, the inertial response of wind turbines (WTs) are widely concerned recently, which is important for grid frequency dynamic and stability. This paper recognizes and understands the inertial response of type-3 and type-4 WTs from the view of equivalent internal voltage, in analogy with typical synchronous generators (SGs). Due to the dynamic of the equivalent inertial voltage different from SGs, the electromechanical inertia of WTs is completely hidden. The rapid power control loop and synchronization control loop is the main reasons that the WT's inertial response is disenabled. On the basis of the equivalent internal voltage's dynamic, the existing inertia control method for WTs are reviewed and summarized as three approaches from the view of WT's control, i.e. optimizing the power control or synchronization control or both. At last, the main challenges and issues of these inertia controls are attempted to explain and address.


2020 ◽  
Vol 3 (5) ◽  
pp. 475-485
Author(s):  
Lining Su ◽  
Xiaohui Qin ◽  
Shang Zhang ◽  
Yantao Zhang ◽  
Yilang Jiang ◽  
...  

2021 ◽  
Vol 13 (1) ◽  
pp. 168781402098732
Author(s):  
Ayisha Nayyar ◽  
Ummul Baneen ◽  
Syed Abbas Zilqurnain Naqvi ◽  
Muhammad Ahsan

Localizing small damages often requires sensors be mounted in the proximity of damage to obtain high Signal-to-Noise Ratio in system frequency response to input excitation. The proximity requirement limits the applicability of existing schemes for low-severity damage detection as an estimate of damage location may not be known  a priori. In this work it is shown that spatial locality is not a fundamental impediment; multiple small damages can still be detected with high accuracy provided that the frequency range beyond the first five natural frequencies is utilized in the Frequency response functions (FRF) curvature method. The proposed method presented in this paper applies sensitivity analysis to systematically unearth frequency ranges capable of elevating damage index peak at correct damage locations. It is a baseline-free method that employs a smoothing polynomial to emulate reference curvatures for the undamaged structure. Numerical simulation of steel-beam shows that small multiple damages of severity as low as 5% can be reliably detected by including frequency range covering 5–10th natural frequencies. The efficacy of the scheme is also experimentally validated for the same beam. It is also found that a simple noise filtration scheme such as a Gaussian moving average filter can adequately remove false peaks from the damage index profile.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4626
Author(s):  
Faris Alatar ◽  
Ali Mehrizi-Sani

Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.


1990 ◽  
Vol 5 (3) ◽  
pp. 720-729 ◽  
Author(s):  
P.M. Anderson ◽  
M. Mirheydar

2008 ◽  
Vol 32 (6) ◽  
pp. 573-586 ◽  
Author(s):  
J.B. Ekanayake ◽  
N. Jenkins ◽  
G. Strbac

Sign in / Sign up

Export Citation Format

Share Document