Force Sensor Using Ionic Liquid Capillary Bridge

Author(s):  
Thanh-Vinh Nguyen ◽  
Shinya Kano ◽  
Atsushi Takei ◽  
Masaaki Ichiki
2020 ◽  
Vol 8 (38) ◽  
pp. 13368-13374
Author(s):  
Muhammad Umair Khan ◽  
Gul Hassan ◽  
Jinho Bae

This paper proposes a novel soft ionic liquid (IL) electrically functional device that displays resistive memory characteristics using poly(acrylic acid) partial sodium salt (PAA-Na+:H2O) solution gel and sodium hydroxide (NaOH) in a thin polydimethylsiloxane (PDMS) cylindrical microchannel.


2020 ◽  
Vol 48 (4) ◽  
pp. 287-314
Author(s):  
Yan Wang ◽  
Zhe Liu ◽  
Michael Kaliske ◽  
Yintao Wei

ABSTRACT The idea of intelligent tires is to develop a tire into an active perception component or a force sensor with an embedded microsensor, such as an accelerometer. A tire rolling kinematics model is necessary to link the acceleration measured with the tire body elastic deformation, based on which the tire forces can be identified. Although intelligent tires have attracted wide interest in recent years, a theoretical model for the rolling kinematics of acceleration fields is still lacking. Therefore, this paper focuses on an explicit formulation for the tire rolling kinematics of acceleration, thereby providing a foundation for the force identification algorithms for an accelerometer-based intelligent tire. The Lagrange–Euler method is used to describe the acceleration field and contact deformation of rolling contact structures. Then, the three-axis acceleration vectors can be expressed by coupling rigid body motion and elastic deformation. To obtain an analytical expression of the full tire deformation, a three-dimensional tire ring model is solved with the tire–road deformation as boundary conditions. After parameterizing the ring model for a radial tire, the developed method is applied and validated by comparing the calculated three-axis accelerations with those measured by the accelerometer. Based on the features of acceleration, especially the distinct peak values corresponding to the tire leading and trailing edges, an intelligent tire identification algorithm is established to predict the tire–road contact length and tire vertical load. A simulation and experiments are conducted to verify the accuracy of the estimation algorithm, the results of which demonstrate good agreement. The proposed model provides a solid theoretical foundation for an acceleration-based intelligent tire.


1997 ◽  
Vol 63 (5) ◽  
pp. 664-668 ◽  
Author(s):  
Daizo TAKAOKA ◽  
Akira SAKAGUCHI ◽  
Yoshitoshi MORITA ◽  
Makoto YAMADA ◽  
Tomomi YAMAGUCHI
Keyword(s):  

2020 ◽  
Author(s):  
Urbi Pal ◽  
Fangfang Chen ◽  
Derick Gyabang ◽  
Thushan Pathirana ◽  
Binayak Roy ◽  
...  

We explore a novel ether aided superconcentrated ionic liquid electrolyte; a combination of ionic liquid, <i>N</i>-propyl-<i>N</i>-methylpyrrolidinium bis(fluorosulfonyl)imide (C<sub>3</sub>mpyrFSI) and ether solvent, <i>1,2</i> dimethoxy ethane (DME) with 3.2 mol/kg LiFSI salt, which offers an alternative ion-transport mechanism and improves the overall fluidity of the electrolyte. The molecular dynamics (MD) study reveals that the coordination environment of lithium in the ether aided ionic liquid system offers a coexistence of both the ether DME and FSI anion simultaneously and the absence of ‘free’, uncoordinated DME solvent. These structures lead to very fast kinetics and improved current density for lithium deposition-dissolution processes. Hence the electrolyte is used in a lithium metal battery against a high mass loading (~12 mg/cm<sup>2</sup>) LFP cathode which was cycled at a relatively high current rate of 1mA/cm<sup>2</sup> for 350 cycles without capacity fading and offered an overall coulombic efficiency of >99.8 %. Additionally, the rate performance demonstrated that this electrolyte is capable of passing current density as high as 7mA/cm<sup>2</sup> without any electrolytic decomposition and offers a superior capacity retention. We have also demonstrated an ‘anode free’ LFP-Cu cell which was cycled over 50 cycles and achieved an average coulombic efficiency of 98.74%. The coordination chemistry and (electro)chemical understanding as well as the excellent cycling stability collectively leads toward a breakthrough in realizing the practical applicability of this ether aided ionic liquid electrolytes in lithium metal battery applications, while delivering high energy density in a prototype cell.


2017 ◽  
Author(s):  
Massimiliano Galluzzi ◽  
Simone Bovio ◽  
Paolo Milani ◽  
Alessandro Podestà

We report on the modification of the electric properties of the imidazolium-based [BMIM][NTf2] ionic liquid upon surface confinement in the sub-monolayer regime. Solid-like insulating nanostructures of [BMIM][NTf2] spontaneously form on a variety of insulating substrates, at odd with the liquid and conductive nature of the same substances in the bulk phase. A systematic spatially resolved investigation by atomic force microscopy of the morphological, mechanical and electrical properties of [BMIM][NTf2] nanostructures showed that this liquid substance rearranges into lamellar nanostructures with a high degree of vertical order and enhanced resistance to mechanical compressive stresses and very intense electric fields, denoting a solid-like character. The morphological and structural reorganization has a profound impact on the electric properties of supported [BMIM][NTf2] islands, which behave like insulator layers with a relative dielectric constant between 3 and 5, comparable to those of conventional ionic solids, and significantly smaller than those measured in the bulk ionic liquid. These results suggest that in the solid-like ordered domains confined either at surfaces or inside the pores of the nanoporous electrodes of photo-electrochemical devices, the ionic mobility and the overall electrical properties can be significantly perturbed with respect to the bulk liquid phase, which would likely influence the<br>performance of the devices.<br>


Sign in / Sign up

Export Citation Format

Share Document