A Rotary Energy Harvester with Liquid Metal Coils Embedded in PDMS Membrane

Author(s):  
Zih-Jyun Wei ◽  
Yi-Cheng Zhang ◽  
Shih-Jui Chen
2018 ◽  
Vol 81 (2) ◽  
pp. 20902 ◽  
Author(s):  
Jinpyo Jeon ◽  
Sang Kug Chung ◽  
Jeong-Bong Lee ◽  
Seok Joo Doo ◽  
Daeyoung Kim

We report an oxidized liquid metal droplet-based energy harvester that converts acoustic energy into electrical energy by modulating an electrical double layer that originates from the deformation of the oxidized liquid metal droplet. Gallium-based liquid metal alloy has been developed for various applications owing to the outstanding material properties, such as its high electrical conductivity (metallic property) and unlimited deformability (liquid property). In this study, we demonstrated energy harvesting using an electrical double layer between the acoustic wave-modulated liquid metal droplet and two electrodes. The proposed energy harvester consisted of top and bottom electrodes covered with the dielectric layer and a Gallium-based liquid metal droplet placed between the electrodes. When we applied an external bias voltage and acoustic wave to the proposed device, the contact area between the liquid metal droplet and the electrodes changed, leading to the variation of the capacitance in the electrical double layer and the generation of electrical output current. Using the proposed energy harvester, the maximum output current of 41.2 nA was generated with an applied acoustic wave of 30 Hz. In addition, we studied the relationships between the maximum output current and a variety of factors, such as the size of the liquid metal droplet, the thickness of the hydrophobic layer, and the distance between the top and bottom electrode plates.


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 458
Author(s):  
Jianbing Xie ◽  
Yiwei Wang ◽  
Rong Dong ◽  
Kai Tao

In this paper, a flexible and stretchable energy harvester based on liquid-metal and fluorinated ethylene propylene (FEP) electret films is proposed and implemented for the application of wearable devices. A gallium liquid-metal alloy with a melting point of 25.0 °C is used to form the stretchable electrode; therefore, the inducted energy harvester will have excellent flexibility and stretchability. The solid-state electrode is wrapped in a dragon-skin silicone rubber shell and then bonded with FEP electret film and conductive film to form a flexible and stretchable energy harvester. Then, the open-circuit voltage of the designed energy harvester is tested and analyzed. Finally, the fabricated energy harvester is mounted on the elbow of a human body to harvest the energy produced by the bending of the elbow. The experimental results show that the flexible and stretchable energy harvester can adapt well to elbow bending and convert elbow motion into electric energy to light the LED in a wearable watch.


2016 ◽  
Vol 108 (2) ◽  
pp. 023903 ◽  
Author(s):  
Jianbo Tang ◽  
Junjie Wang ◽  
Jing Liu ◽  
Yuan Zhou

1993 ◽  
Vol 3 (8) ◽  
pp. 1201-1225 ◽  
Author(s):  
G. N�ron de Surgy ◽  
J.-P. Chabrerie ◽  
O. Denoux ◽  
J.-E. Wesfreid

1984 ◽  
Vol 45 (C9) ◽  
pp. C9-179-C9-182
Author(s):  
G. L.R. Mair ◽  
T. Mulvey ◽  
R. G. Forbes

Sign in / Sign up

Export Citation Format

Share Document