A Survey on Authorization in Distributed Systems: Information Storage, Data Retrieval and Trust Evaluation

Author(s):  
Ava Ahadipour ◽  
Martin Schanzenbach
2018 ◽  
Author(s):  
Henry H. Lee ◽  
Reza Kalhor ◽  
Naveen Goela ◽  
Jean Bolot ◽  
George M. Church

AbstractDNA is an emerging storage medium for digital data but its adoption is hampered by limitations of phosphoramidite chemistry, which was developed for single-base accuracy required for biological functionality. Here, we establish a de novo enzymatic DNA synthesis strategy designed from the bottom-up for information storage. We harness a template-independent DNA polymerase for controlled synthesis of sequences with user-defined information content. We demonstrate retrieval of 144-bits, including addressing, from perfectly synthesized DNA strands using batch-processed Illumina and real-time Oxford Nanopore sequencing. We then develop a codec for data retrieval from populations of diverse but imperfectly synthesized DNA strands, each with a ~30% error tolerance. With this codec, we experimentally validate a kilobyte-scale design which stores 1 bit per nucleotide. Simulations of the codec support reliable and robust storage of information for large-scale systems. This work paves the way for alternative synthesis and sequencing strategies to advance information storage in DNA.


1989 ◽  
Vol 2 (4) ◽  
pp. 289-293 ◽  
Author(s):  
Hans J. Bentz ◽  
Michael Hagstroem ◽  
Guenther Palm

2003 ◽  
Vol 15 (5) ◽  
pp. 521-527 ◽  
Author(s):  
Daisuke Kurabayashi ◽  
◽  
Kenichi Noda ◽  
Hajime Asama ◽  
Kuniaki Kawabata ◽  
...  

We propose a search-and-rescue information assistance system that consists of an intelligent data carrier for rescue (IDC-R) and a data retrieval blimp (DRB). The IDC provides the environment with information storage, sensing, and processing. We incorporated auditory functionality into IDCs and used them to support search-and-rescue. IDC-Rs in buildings repeatedly call to victims and record their answers independently. A DRB flies over a disaster area and communicates with IDC-Rs to activate them and to obtain data. We have implemented actual devices and describe a feasible motion planning algorithm for a DRB.


Author(s):  
Weigang Chen ◽  
Mingzhe Han ◽  
Jianting Zhou ◽  
Qi Ge ◽  
Panpan Wang ◽  
...  

Abstract DNA digital storage provides an alternative for information storage with high density and long-term stability. Here, we report the de novo design and synthesis of an artificial chromosome that encodes two pictures and a video clip. The encoding paradigm utilizing the superposition of sparsified error correction codewords and pseudo-random sequences tolerates base insertions/deletions and is well suited to error-prone nanopore sequencing for data retrieval. The entire 254 kb sequence was 95.27% occupied by encoded data. The Transformation-Associated Recombination method was used in the construction of this chromosome from DNA fragments and necessary autonomous replication sequences. The stability was demonstrated by transmitting the data-carrying chromosome to the 100th generation. This study demonstrates a data storage method using encoded artificial chromosomes via in vivo assembly for write-once and stable replication for multiple retrievals, similar to a compact disc, with potential in economically massive data distribution.


Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

We have long felt that some form of electronic information retrieval would be more desirable than conventional photographic methods in a high vacuum electron microscope for various reasons. The most obvious of these is the fact that with electronic data retrieval the major source of gas load is removed from the instrument. An equally important reason is that if any subsequent analysis of the data is to be made, a continuous record on magnetic tape gives a much larger quantity of data and gives it in a form far more satisfactory for subsequent processing.


Author(s):  
D. E. Speliotis

The interaction of electron beams with a large variety of materials for information storage has been the subject of numerous proposals and studies in the recent literature. The materials range from photographic to thermoplastic and magnetic, and the interactions with the electron beam for writing and reading the information utilize the energy, or the current, or even the magnetic field associated with the electron beam.


Author(s):  
T. P. Nolan

Thin film magnetic media are being used as low cost, high density forms of information storage. The development of this technology requires the study, at the sub-micron level, of morphological, crystallographic, and magnetic properties, throughout the depth of the deposited films. As the microstructure becomes increasingly fine, widi grain sizes approaching 100Å, the unique characterization capabilities of transmission electron microscopy (TEM) have become indispensable to the analysis of such thin film magnetic media.Films were deposited at 225°C, on two NiP plated Al substrates, one polished, and one circumferentially textured with a mean roughness of 55Å. Three layers, a 750Å chromium underlayer, a 600Å layer of magnetic alloy of composition Co84Cr14Ta2, and a 300Å amorphous carbon overcoat were then sputter deposited using a dc magnetron system at a power of 1kW, in a chamber evacuated below 10-6 torr and filled to 12μm Ar pressure. The textured medium is presently used in industry owing to its high coercivity, Hc, and relatively low noise. One important feature is that the coercivity in the circumferential read/write direction is significandy higher than that in the radial direction.


Sign in / Sign up

Export Citation Format

Share Document