High speed video monitoring system for eyelid movement measurements

Author(s):  
Daniel Petrisor ◽  
Cristian Fosalau ◽  
Cristian Zet ◽  
Felix Mariut
2011 ◽  
Vol 291-294 ◽  
pp. 2823-2828
Author(s):  
Jin Qing Liu ◽  
Qun Zhen Fan

This paper adopts high-speed fixed-point signal processor TMS320DM64 produced by TI company, XC2S150 chip FPGA produced by Xilinx company, video front-end decoder chip SAA7111 and back-end encoding chip AL250 new launched by PHILIP company, which constituted a high-speed, intelligent live video monitoring system. The system video image transmission of strong real-time, high efficiency and good transmission quality can meet the requirements of many video image processing and transmission field application in current, and has a good application prospect. The design of system software and hardware that introduced in this paper is the key.


2020 ◽  
Author(s):  
Ramesh Madipally ◽  
Sheela Nair L ◽  
Rui Taborda

<p>In recent years, Coastal video monitoring methods have been widely accepted tools for continuous monitoring of complex coastal processes. In this paper, the progress made on a new python based coastal video monitoring system, PI-COSMOS (Portuguese Indian COaStal MOnitoring System) which is being developed and tested jointly in India and Portuguese coasts is presented. PI-COSMOS system aims at providing open source, high speed video monitoring toolboxes for the coastal community that can be used anywhere in the world. PI-COSMOS is camera independent system and comprises four modules viz. PI-Calib for camera calibration, RectiPI for video imagery rectification, PI-ImageStacks for image product and pixel product generation and PI- DB for efficient database management. The applicability of PICOSMOS system under different coastal environment conditions has been tested using the data collected from the India as well as the Portugal coast. The results from one of the Indian stations installed at Kozhikode beach, Kerala, India situated at 11°15'14.12" N, 75° 46'15.40" E are presented here to demonstrate the capabilities of the newly developed PI-COSMOS system. the performance of PI-COSMOS is evaluated by conducting a comparative study among PICOSMOS and existing video monitoring toolboxes like UAV processing toolbox provided by Coastal Research Imaging Network and RectifyExtreme provided by the University of Lisbon and it is found that the processing speed of PI-COSMOS is very much high i.e. more than 5 times when compared to UAV processing toolbox and RectifyExtreme.  The high speed performance, camera independent nature and easiness in the operation made PI-COSMOS as the simplest and advanced open source video monitoring system.</p><p> </p>


2003 ◽  
Vol 299A (2) ◽  
pp. 127-138 ◽  
Author(s):  
Sebastian Berger ◽  
Wolfram Kutsch

Author(s):  
Г.В. Кузнецов ◽  
П.А. Стрижак

AbstractWe have experimentally studied the interaction between water drops of various surface configurations moving in a gas medium. Results of high-speed video monitoring provide a database on these collisions (in coagulation, expansion, and fragmentation regimes) for particles of spherical, oblate, and elongated ellipsoids. It is established that a determining role belongs to the surface configuration of drops (in addition to traditional notions about the influence of their dimensions, velocities, and angle of attack). The values of Weber numbers have been calculated for description of the conditions of interaction between drops of various shapes.


2019 ◽  
Vol 85 (6) ◽  
pp. 53-63 ◽  
Author(s):  
I. E. Vasil’ev ◽  
Yu. G. Matvienko ◽  
A. V. Pankov ◽  
A. G. Kalinin

The results of using early damage diagnostics technique (developed in the Mechanical Engineering Research Institute of the Russian Academy of Sciences (IMASH RAN) for detecting the latent damage of an aviation panel made of composite material upon bench tensile tests are presented. We have assessed the capabilities of the developed technique and software regarding damage detection at the early stage of panel loading in conditions of elastic strain of the material using brittle strain-sensitive coating and simultaneous crack detection in the coating with a high-speed video camera “Video-print” and acoustic emission system “A-Line 32D.” When revealing a subsurface defect (a notch of the middle stringer) of the aviation panel, the general concept of damage detection at the early stage of loading in conditions of elastic behavior of the material was also tested in the course of the experiment, as well as the software specially developed for cluster analysis and classification of detected location pulses along with the equipment and software for simultaneous recording of video data flows and arrays of acoustic emission (AE) data. Synchronous recording of video images and AE pulses ensured precise control of the cracking process in the brittle strain-sensitive coating (tensocoating)at all stages of the experiment, whereas the use of structural-phenomenological approach kept track of the main trends in damage accumulation at different structural levels and identify the sources of their origin when classifying recorded AE data arrays. The combined use of oxide tensocoatings and high-speed video recording synchronized with the AE control system, provide the possibility of definite determination of the subsurface defect, reveal the maximum principal strains in the area of crack formation, quantify them and identify the main sources of AE signals upon monitoring the state of the aviation panel under loading P = 90 kN, which is about 12% of the critical load.


Author(s):  
I Made Oka Widyantara ◽  
I Made Dwi Asana Putra ◽  
Ida Bagus Putu Adnyana

This paper intends to explain the development of Coastal Video Monitoring System (CoViMoS) with the main characteristics including low-cost and easy implementation. CoViMoS characteristics have been realized using the device IP camera for video image acquisition, and development of software applications with the main features including detection of shoreline and it changes are automatically. This capability was based on segmentation and classification techniques based on data mining. Detection of shoreline is done by segmenting a video image of the beach, to get a cluster of objects, namely land, sea and sky, using Self Organizing Map (SOM) algorithms. The mechanism of classification is done using K-Nearest Neighbor (K-NN) algorithms to provide the class labels to objects that have been generated on the segmentation process. Furthermore, the classification of land used as a reference object in the detection of costline. Implementation CoViMoS system for monitoring systems in Cucukan Beach, Gianyar regency, have shown that the developed system is able to detect the shoreline and its changes automatically.


Sign in / Sign up

Export Citation Format

Share Document