Framework of Maximum Power Extraction From Solar PV Panel Using Self Predictive Perturb and Observe Algorithm

2018 ◽  
Vol 9 (2) ◽  
pp. 895-903 ◽  
Author(s):  
Nishant Kumar ◽  
Ikhlaq Hussain ◽  
Bhim Singh ◽  
Bijaya Ketan Panigrahi
2018 ◽  
Vol 22 (1) ◽  
pp. 19 ◽  
Author(s):  
Deepthi Pilakkat ◽  
S. Kanthalakshmi

The characteristic of a Photovoltaic (PV) panel is most affected by the incident solar insolation temperature, shading, and array configuration. Maximum power point tracking (MPPT) algorithms have an important role in harvesting maximum power from the solar PV arrays. Among the various MPPT methods Perturb and Observe (P&O) algorithm is the simple and efficient one. However, there will be a drift problem in case of increase in insolation. This drift will be more under rapid increase in insolation. To improve the speed of tracking the Maximum Power Point (MPP), a variable step size P&O (VSSPO) is developed. The drift problem will be more in the case of VSSPO as it will have a larger step size for an increase in insolation. In this paper, the maximum output power extraction from Solar PV under rapidly increasing insolation conditions by a drift free P&O (DFP&O) as well as drift free VSSPO (DFVSSPO) method is presented.


2021 ◽  
pp. 1-33
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract Individual performance of photovoltaic (PV) modules is contravened by mismatch losses which results in blockage in most of the solar power generated by the PV array (PVA). Partial shading conditions (PSCs) are the main causes of these losses. Several techniques have been discussed to reduce the issues caused by PSCs. Reconfiguration techniques have been proven to be one of the most successful methods that help towards this cause. In this method, the location of PV module (PVM) in the PVA is reconfigured so that the shading effects get distributed throughout the entire array and, hence, maximizing the power output. Two novel reconfiguration patterns such as canonical SuDoKu (CS) and multi diagonal SuDoKu (MDS) for total cross tied (TCT) configuration have been put forth in this manuscript. This approach aims to rearrange the PVMs in the TCT array as per the fed in patterns without causing a change in the internal electrical connections. Further parts of the manuscript focus on the comparison of the proposed pattern's performance with other pre-existing PVA arrangements such as, TCT, SuDoKu, optimal SuDoKu (OS) and modified SuDoku (MS) by taking into account the effects of global maximum power (GMP) point, mismatch power loss, fill factor and performance ratio. The results obtained from the detailed analysis presented in this paper gives proper evidence that, in many cases, the GMP is amplified in the CS and, in all cases, GMP is amplified in the proposed MDS PVA under different shading conditions.


2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chih-Lung Shen ◽  
Shih-Hsueh Yang

A multi-input converter (MIC) to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT) feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.


2020 ◽  
Vol 182 ◽  
pp. 03005
Author(s):  
Rodney H.G. Tan ◽  
Chee Kang Er ◽  
Sunil G. Solanki

This paper presents the circuitry modeling of the solar photovoltaic MPPT lead-acid battery charge controller for the standalone system in MATLAB/Simulink environment. A buck topology is utilized as a DC-DC converter for the charge controller implementation. The maximum power of the photovoltaic panel is tracked by the Perturb and Observe MPPT algorithm. The battery charge controller charges the lead-acid battery using a three-stage charging strategy. The three charging stages include the MPPT bulk charge, constant voltage absorption charge, and float charge stage. The performance analysis of the model is carried out in the following aspects, there are MPPT tracking performance, battery charging performance and overall charge controller efficiency performance are benchmarked with commercial MPPT charge controller for validation. The performance result shows that the MPPT is capable to track to the PV panel maximum point at any solar irradiance variation within 0.5 seconds with maximum power tracking efficiency up to 99.9 %. The three-stage charging strategy also successfully demonstrated. The overall charge controller average efficiency achieved up to 98.3 % which matches many high end commercial solar PV MPPT charge controller product specifications. This validated model contributes to a better sizing of PV panel and battery energy storage for the small and medium standalone PV system.


Sign in / Sign up

Export Citation Format

Share Document