scholarly journals Multi-Input Converter with MPPT Feature for Wind-PV Power Generation System

2013 ◽  
Vol 2013 ◽  
pp. 1-13 ◽  
Author(s):  
Chih-Lung Shen ◽  
Shih-Hsueh Yang

A multi-input converter (MIC) to process wind-PV power is proposed, designed, analyzed, simulated, and implemented. The MIC cannot only process solar energy but deal with wind power, of which structure is derived from forward-type DC/DC converter to step-down/up voltage for charger systems, DC distribution applications, or grid connection. The MIC comprises an upper modified double-ended forward, a lower modified double-ended forward, a common output inductor, and a DSP-based system controller. The two modified double-ended forwards can operate individually or simultaneously so as to accommodate the variation of the hybrid renewable energy under different atmospheric conditions. While the MIC operates at interleaving mode, better performance can be achieved and volume also is reduced. The proposed MIC is capable of recycling the energy stored in the leakage inductance and obtaining high step-up output voltage. In order to draw maximum power from wind turbine and PV panel, perturb-and-observe method is adopted to achieve maximum power point tracking (MPPT) feature. The MIC is constructed, analyzed, simulated, and tested. Simulations and hardware measurements have demonstrated the feasibility and functionality of the proposed multi-input converter.

Maximum power point tracking is a commonly used technique for extracting maximum possible power from solar photovoltaic (PV) systems under all conditions. Various methods used for implementation of MPPT algorithm, out of those methods, perturb and observe (P&O) is very popular and commonly using method owing to its simplicity, easy implementation and highly efficient nature. However, P&O algorithm has disadvantage that it suffers from drift phenomenon in which during sudden change in atmospheric conditions, the algorithm drifts away from the maximum power point (MPP). This paper proposes modifications in the conventional P&O algorithm to overcome the drifting of MPP during suddenly changing atmospheric conditions. This algorithm takes change in current into consideration along with change in voltage and power and is verified using MATLAB/Simulink. DC/DC control is achieved using SEPIC converter and simulation results of the proposed algorithm show that the system can track the MPP in transient whether conditions and drifting is avoided


2020 ◽  
Vol 10 (11) ◽  
pp. 3912 ◽  
Author(s):  
Altwallbah Neda Mahmod Mohammad ◽  
Mohd Amran Mohd Radzi ◽  
Norhafiz Azis ◽  
Suhaidi Shafie ◽  
Muhammad Ammirrul Atiqi Mohd Zainuri

In this paper, we propose enhanced adaptive step size Perturb and Observe (P&O) maximum power point tracking (MPPT) with properly organized comparison sequences which lead to achieving the actual maximum power point (MPP) effectively in the presence of partial shading conditions, taking into account the optimization of all aspects of high-performance MPPT to be novel, simpler, fast, and accurate, with the best efficiency reaching up to almost 100%. In this study, the proposed algorithm, along with a boost converter, was designed and simulated in MATLAB/Simulink to validate the performance of the suggested technique. Four different levels of partial shading conditions were considered for system examination: weak, moderate, and two different levels of strong shading. Each case was applied separately first and then combined in a sequence arrangement to provide robust and comprehensive testing which can provide a guaranteed assessment of the proposed algorithm. The performance of the suggested technique is discussed and compared with that of conventional P&O and conventional incremental conductance (IC) MPPT techniques. The failure of the conventional techniques to work efficiently in the presence of partial shading conditions was observed from the simulation results. Meanwhile, the success of the proposed technique and its high performance were clearly confirmed under partial shading conditions with no increase in complexity or convergence time.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1843 ◽  
Author(s):  
Leopoldo Gil-Antonio ◽  
Belem Saldivar ◽  
Otniel Portillo-Rodríguez ◽  
Juan Carlos Ávila-Vilchis ◽  
Pánfilo Raymundo Martínez-Rodríguez ◽  
...  

Solar energy harvesting using Photovoltaic (PV) systems is one of the most popular sources of renewable energy, however the main drawback of PV systems is their low conversion efficiency. An optimal system operation requires an efficient tracking of the Maximum Power Point (MPP), which represents the maximum energy that can be extracted from the PV panel. This paper presents a novel control approach for the Maximum Power Point Tracking (MPPT) based on the differential flatness property of the Boost converter, which is one of the most used converters in PV systems. The underlying idea of the proposed control approach is to use the classical flatness-based trajectory tracking control where a reference voltage will be defined in terms of the maximum power provided by the PV panel. The effectiveness of the proposed controller is assessed through numerical simulations and experimental tests. The results show that the controller based on differential flatness is capable of converging in less than 0.15 s and, compared with other MPPT techniques, such as Incremental Conductance and Perturb and Observe, it improves the response against sudden changes in load or weather conditions, reducing the ringing in the output of the system. Based on the results, it can be inferred that the new flatness-based controller represents an alternative to improve the MPPT in PV systems, especially when they are subject to sudden load or weather changes.


Sign in / Sign up

Export Citation Format

Share Document