Advanced SuDoKu Based Reconfiguration Strategies for Maximum Power Extraction from Partially Shaded Solar PV Array

2021 ◽  
pp. 1-33
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract Individual performance of photovoltaic (PV) modules is contravened by mismatch losses which results in blockage in most of the solar power generated by the PV array (PVA). Partial shading conditions (PSCs) are the main causes of these losses. Several techniques have been discussed to reduce the issues caused by PSCs. Reconfiguration techniques have been proven to be one of the most successful methods that help towards this cause. In this method, the location of PV module (PVM) in the PVA is reconfigured so that the shading effects get distributed throughout the entire array and, hence, maximizing the power output. Two novel reconfiguration patterns such as canonical SuDoKu (CS) and multi diagonal SuDoKu (MDS) for total cross tied (TCT) configuration have been put forth in this manuscript. This approach aims to rearrange the PVMs in the TCT array as per the fed in patterns without causing a change in the internal electrical connections. Further parts of the manuscript focus on the comparison of the proposed pattern's performance with other pre-existing PVA arrangements such as, TCT, SuDoKu, optimal SuDoKu (OS) and modified SuDoku (MS) by taking into account the effects of global maximum power (GMP) point, mismatch power loss, fill factor and performance ratio. The results obtained from the detailed analysis presented in this paper gives proper evidence that, in many cases, the GMP is amplified in the CS and, in all cases, GMP is amplified in the proposed MDS PVA under different shading conditions.

2021 ◽  
pp. 1-36
Author(s):  
Shahroz Anjum ◽  
Vivekananda Mukherjee ◽  
Gitanjali Mehta

Abstract This manuscript focuses on the rearrangement of the structure of the photovoltaic (PV) array under different shading conditions. It aims to analyze the mismatch power losses (MPLs) due to irregular illumination over PV array (PVA). The impact of partial irradiance not only affects the electrical power but also causes multiple peaks in the P-V and I-V curves. The formulation of the best PVA configuration (PVAC) to achieve maximum output even under partial shading conditions is the deciding factor for the topologies considered. To aid the maximum power extraction, a new SuDoKu PVAC is designed like hyper SuDoKu (HS). This new structure is compared with the already existing PVACs such as bridge link, honey comb, series parallel, total cross-tied, and SuDoKu in the effect of considerable cases of shadowing. MATLAB/SIMULINK is used for the designing and computer based modeling of all these PVACs is considered in this work. The evaluation of these arrangements has been done by keeping several performance factors as the deciding pivot points. These factors include MPL, efficiency, global maximum power point (GMPP), and fill factor (FF). The results obtained through this document suggest that the HS arrangement proposed here gives the best outcome for each shading condition. The proposed HS structural arrangement of PVA deals with significantly superior GMPP, FF and efficiency while maintaining minimum MPL in comparison to the other arrangements.


2015 ◽  
Vol 43 ◽  
pp. 102-110 ◽  
Author(s):  
Shubhankar Niranjan Deshkar ◽  
Sumedh Bhaskar Dhale ◽  
Jishnu Shekar Mukherjee ◽  
T. Sudhakar Babu ◽  
N. Rajasekar

2018 ◽  
Vol 9 (1) ◽  
pp. 74-85 ◽  
Author(s):  
Thanikanti Sudhakar Babu ◽  
J. Prasanth Ram ◽  
Tomislav Dragicevic ◽  
Masafumi Miyatake ◽  
Frede Blaabjerg ◽  
...  

Author(s):  
K Latha Shenoy ◽  
C. Gurudas Nayak ◽  
Rajashekar P. Mandi

As conventional fossil fuel reserves shrink and the danger of climate change prevailing, the need for alternative energy sources is unparalleled. A smart approach to compensate the dependence on electricity generated by burning fossil fuels is through the power generation using grid connected PV system. Partial shading on PV array affects the quantity of the output power in photovoltaic (PV) systems. To extract maximum power from PV under variable irradiance, variable temperature and partial shading condition, various MPPT algorithms are used. Incremental conductance and fuzzy based MPPT techniques are used for maximum power extraction from PV array. Basically 11 kW Solar PV system comprising of PV array coupled with an Inverter through a dc-dc converter is considered for the analysis and output of the inverter is supplied to the load through the LCL filter. An Intelligent controller for maximum power point tracking of PV power is designed. Also, a fuzzy controller for VSC is developed to improve the system performance. The above proposed design has been simulated in the MATLAB/Simulink and analyzed the system performance under various operating conditions. Finally, the performance is evaluated with IEEE 1547 standard for showing the effectiveness of the system.


2021 ◽  
Vol 13 (24) ◽  
pp. 13627
Author(s):  
Astitva Kumar ◽  
Mohammad Rizwan ◽  
Uma Nangia ◽  
Muhannad Alaraj

The extraction of maximum power is a big challenge in solar photovoltaic-based power plants due to varying atmospheric and meteorological parameters. The concept of array reconfiguration is applied for the maximum power extraction in solar PV plants. Using this approach, the occurrence of multiple peaks in P-V and I-V characteristics during partial shade can be smoothened and reduced significantly. Partial shading due to the movement of the cloud is considered in the research. The cloud movement mainly because of velocity and wind direction is used for creating various shading conditions. The main focus is to reduce the power losses during partial shading using a nature-inspired optimization approach to reconfigure the array for different types of shading conditions. A grey wolf optimizer-based bridge-linked total cross-tied (GWO-BLTCT) configuration is proposed in this paper. The performance of the proposed topology is compared with standard and hybrid topologies, namely, series-parallel, total cross-tied, BLTCT, and SuDoKu-BLTCT, based on performance indicators such as fill factor, performance ratio, power enhancement, and power loss. The proposed GWO-BLTCT outperforms the remaining topologies due to the least power loss and high fill factor. It also has the highest average power enhancement and performance ratio with 23.75% and 70.02% respectively.


Author(s):  
Salmi Hassan ◽  
Badri Abdelmajid ◽  
Zegrari Mourad ◽  
Sahel Aicha ◽  
Baghdad Abdenaceur

<p>Maximum power point tracking (MPPT) algorithms are employed in photovoltaic (PV) systems to make full utilization of PV array output power, which have a complex relationship between ambient temperature and solar irradiation. The power-voltage characteristic of PV array operating under partial shading conditions (PSC) exhibits multiple local maximum power points (LMPP). In this paper, an advanced algorithm has been presented to track the global maximum power point (GMPP) of PV. Compared with the Perturb and Observe (P&amp;O) techniques, the algorithm proposed the advantages of determining the location of GMPP whether partial shading is present.</p>


2019 ◽  
Vol 16 (8) ◽  
pp. 3338-3345 ◽  
Author(s):  
Paresh S. Nasikkar ◽  
Chandrakant D. Bhos

Extracting the maximum power from as solar PV system is a critical task when high changes in light intensity or Partial Shading Condition (PSC) are experienced. The latter case is more difficult as it creates multiple maxima points on P–V curve. In this way, it is obligatory to thoroughly pick a precise Maximum Power Point Tracking (MPPT) method which recognizes adequately the Global Maximum Power Point (GMPP) and tracks it under partial shading. This paper first describes the modeling of PV module and PV characteristics under uniform irradiance as well as effect of PSC on PV characteristics. In the latter sections, a review of conventional and intelligent MPPT methods is done. To tackle the problem of MPPT under PSC, two metaheurisric algorithms namely Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are described briefly. A new optimization method called Cuckoo Search (CS) is implemented in MATLAB SIMULINK tool and tested under three different PSC patterns. A comparative analysis of different MPPT strategies is made after analyzing the results.


Sign in / Sign up

Export Citation Format

Share Document