Integrated Dispatch Model for Combined Heat and Power Plant With Phase-Change Thermal Energy Storage Considering Heat Transfer Process

2018 ◽  
Vol 9 (3) ◽  
pp. 1234-1243 ◽  
Author(s):  
Yuanhang Dai ◽  
Lei Chen ◽  
Yong Min ◽  
Pierluigi Mancarella ◽  
Qun Chen ◽  
...  
Author(s):  
Mohammad Bashar ◽  
Kamran Siddiqui

Thermal energy storages are becoming important due to their significance in energy conservation as well as for the uninterrupted supply of thermal energy from renewable energy sources. The latent heat-based thermal energy storage systems utilizing phase change material (PCM) are gaining much attention due to some inherent advantages compared to sensible heat-based storage systems. However, the heat transfer process associated with the phase change in a PCM is complex and not well understood. In the present study, the melting process in a PCM-based thermal storage is experimentally studied. Two different configurations of the heat source were considered; horizontal and U-tube heat sources. The results show that the heat source shape has a significant influence on the solid to liquid phase change process (melting). The results also show that for the horizontal heat source configuration, the solid-liquid interface has a wavy profile, which is attributed to the convective cells in the melted domain of the PCM. These convective cells also influence the heat transfer coefficient, which decreased with an increase in the melted fraction. In U-tube configuration, the heat is non-uniformly transferred to the PCM domain.


2019 ◽  
Vol 10 (1) ◽  
pp. 192-203 ◽  
Author(s):  
Yuanhang Dai ◽  
Lei Chen ◽  
Yong Min ◽  
Qun Chen ◽  
Junhong Hao ◽  
...  

2018 ◽  
Vol 10 (0) ◽  
pp. 1-7 ◽  
Author(s):  
Saulius Pakalka ◽  
Kęstutis Valančius ◽  
Giedrė Streckienė ◽  
Vaidvilė Ulbikaitė

In order to use efficiently residual, waste or renewable energy, the application of phase change materials (PCM) grows in building energy systems. At the same time, this poses new technological challenges in choosing specific materials, system design solutions, because it requires a specific knowledge of the heat transfer process during the phase change. The aim of the work is to investigate the heat transfer in a PCM based thermal energy storage unit using the COMSOL Multiphysics software. In the analysis, the properties of the material were evaluated during the phase change. This allowed to determine that the thermal conductivity of the material is of great importance for the intensification of heat transfer. In addition, the analysis of several points in the analyzed object revealed that the phase change does not occur in the surface layer of the PCM during the period under consideration. In order to avoid that, additional solutions such as integrating heat-conductive materials into the PCM or increasing the surface area of the heat transfer could be used. Santrauka Siekiant efektyviai išnaudoti perteklinę, atliekinę ar atsinaujinančių energijos išteklių gaminamą energiją, vis dažniau taikomas fazinio virsmo medžiagų (FVM) panaudojimas pastato energetinėse sistemose. Kartu tai kelia naujus technologinius iššūkius pasirenkant konkrečias medžiagas, sistemų projektinius sprendinius, nes reikia gerai išmanyti šilumos mainų procesą vykstant fazės virsmui. Šiame darbe siekiama ištirti šilumos mainus šilumos kaupiklyje su fazinio virsmo medžiagomis naudojantis COMSOL Multiphysics programa. Analizės metu įvertintos medžiagos savybės vykstant fazės virsmui. Tai leido nustatyti, kad medžiagos šilumos laidumo koeficientas turi didelę reikšmę šilumos mainų intensyvinimui. Be to, atskirų taškų analizė tyrimo objekte atskleidė, kad per nagrinėjamąjį laikotarpį FVM paviršiniame sluoksnyje fazės virsmas neįvyksta. Siekiant to išvengti, galimi papildomi sprendimai, tokie kaip šilumai laidžių medžiagų integravimas į FVM arba šilumos mainų paviršiaus ploto didinimas.


2021 ◽  
Vol 13 (5) ◽  
pp. 2590
Author(s):  
S. A. M. Mehryan ◽  
Kaamran Raahemifar ◽  
Leila Sasani Gargari ◽  
Ahmad Hajjar ◽  
Mohamad El Kadri ◽  
...  

A Nano-Encapsulated Phase-Change Material (NEPCM) suspension is made of nanoparticles containing a Phase Change Material in their core and dispersed in a fluid. These particles can contribute to thermal energy storage and heat transfer by their latent heat of phase change as moving with the host fluid. Thus, such novel nanoliquids are promising for applications in waste heat recovery and thermal energy storage systems. In the present research, the mixed convection of NEPCM suspensions was addressed in a wavy wall cavity containing a rotating solid cylinder. As the nanoparticles move with the liquid, they undergo a phase change and transfer the latent heat. The phase change of nanoparticles was considered as temperature-dependent heat capacity. The governing equations of mass, momentum, and energy conservation were presented as partial differential equations. Then, the governing equations were converted to a non-dimensional form to generalize the solution, and solved by the finite element method. The influence of control parameters such as volume concentration of nanoparticles, fusion temperature of nanoparticles, Stefan number, wall undulations number, and as well as the cylinder size, angular rotation, and thermal conductivities was addressed on the heat transfer in the enclosure. The wall undulation number induces a remarkable change in the Nusselt number. There are optimum fusion temperatures for nanoparticles, which could maximize the heat transfer rate. The increase of the latent heat of nanoparticles (a decline of Stefan number) boosts the heat transfer advantage of employing the phase change particles.


2000 ◽  
Vol 122 (4) ◽  
pp. 176-182 ◽  
Author(s):  
Mounir Ibrahim ◽  
Pavel Sokolov ◽  
Thomas Kerslake ◽  
Carol Tolbert

Two sets of experimental data for cylindrical canisters with thermal energy storage applications were examined in this paper: 1) Ground Experiments and 2) Space Experiments. A 2-D computational model was developed for unsteady heat transfer (conduction and radiation) with phase-change. The radiation heat transfer employed a finite volume method. The following was found in this study: 1) Ground Experiments, the convection heat transfer is equally important to that of the radiation heat transfer; Radiation heat transfer in the liquid is found to be more significant than that in the void; Including the radiation heat transfer in the liquid resulted in lower temperatures (about 15 K) and increased the melting time (about 10 min.); Generally, most of the heat flow takes place in the radial direction. 2) Space Experiments, Radiation heat transfer in the void is found to be more significant than that in the liquid (exactly the opposite to the Ground Experiments); Accordingly, the location and size of the void affects the performance considerably; Including the radiation heat transfer in the void resulted in lower temperatures (about 40 K). [S0199-6231(00)00304-X]


Author(s):  
D. Zhou ◽  
C. Y. Zhao

Phase change materials (PCMs) have been widely used for thermal energy storage systems due to their capability of storing and releasing large amounts of energy with a small volume and a moderate temperature variation. Most PCMs suffer the common problem of low thermal conductivity, being around 0.2 and 0.5 for paraffin and inorganic salts, respectively, which prolongs the charging and discharging period. In an attempt to improve the thermal conductivity of phase change materials, the graphite or metallic matrix is often embedded within PCMs to enhance the heat transfer. This paper presents an experimental study on heat transfer characteristics of PCMs embedded with open-celled metal foams. In this study both paraffin wax and calcium chloride hexahydrate are employed as the heat storage media. The transient heat transfer behavior is measured. Compared to the results of pure PCMs samples, the investigation shows that the additions of metal foams can double the overall heat transfer rate during the melting process. The results of calcium chloride hexahydrate are also compared with those of paraffin wax.


Sign in / Sign up

Export Citation Format

Share Document