Detection of tissue harmonic motion induced by ultrasonic radiation force using pulse-echo ultrasound and kalman filter

Author(s):  
Yi Zheng ◽  
Shigao Chen ◽  
Wei Tan ◽  
Randall Kinnick ◽  
James F. Greenleaf
Author(s):  
Caroline Maleke ◽  
Jianwen Luo ◽  
Assimina A. Pelegri ◽  
Elisa E. Konofagou

Mechanical changes in breast tissues as a result of cancer are usually detected through palpation by the physician and/or self examination. However, physicians are unable to palpate most masses under 1 cm in diameter and microscopic diseases. The goal of our study is to introduce the application of the Harmonic Motion Imaging (HMI), an acoustic radiation force technique, for reliable sensitive tumor detection and real-time monitoring of tumor ablation. Here, we applied the HMI technique using a single-element Focused Ultrasound (FUS) transducer. Due to the highly localized and harmonic nature of the response, the motion characteristics can be directly linked to the regional tissue modulus. In this experiment, a confocal transducer, combining a 4.68 MHz therapy (FUS) and a 7.5 MHz diagnostic (pulse-echo) probe, was used. The FUS beam was further modulated by a low AM continuous wave at 25 Hz. A pulser/receiver was used to drive the pulse-echo transducer at a Pulse Repetition Frequency (PRF) of 5.4 kHz. The radio-frequency (RF) signals were acquired using a standard pulse echo technique. The intensity amplitudes of the FUS beam at the focus (Ispta) were 231 W/cm2 for tumor detection and 1086 W/cm2 for FUS ablation. An analog bandpass filter was used to remove the spectrum of the FUS beam prior to displacement estimation. The resulting axial tissue displacement (i.e., HMI displacement) was estimated using an RF-based speckle tracking technique based on 1D cross-correlation. For tumor mapping, a harmonic radiation force was applied using a 2D raster-scan technique. The 3D HMI image was obtained by combining multiple 2D planes at different depths. The 2D and 3D HMI images in ex vivo breast tissues could detect a benign tumor (2×5×5mm3) surrounded by normal tissue, and a malignant tumor (8×7×5mm3) embedded in glandular and fat tissues. For FUS therapy, temperature measurements and RF signals were acquired during thermal ablation. HMI images during FUS ablation showed lower displacements, indicating thus tissue hardening due to lesion formation at temperatures higher than 50°C. A finite-element model (FEM) simulation was also used to analyze the findings of the experimental results. In conclusion, this technique demonstrates feasibility of the HMI technique for tumor detection and characterization, as well as real-time monitoring of tissue ablation based on the associated tissue elasticity changes.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 12
Author(s):  
Penumarty Hiranmayi ◽  
Kola Sai Gowtham ◽  
S Koteswara Rao ◽  
V Gopi Tilak

The phenomenon of simple harmonic motion is more vigilantly explained using a simple pendulum. The angular motion of a pendulum is linear in nature. But the analysis of the motion along the horizontal direction is non-linear. To estimate this, several algorithms like the Kalman filter, Extended Kalman Filter etc. are adopted. Here in this paper, Particle filter is chosen which is a method to form Monte Carlo approximations to the solutions of Bayesian filtering equations. Sequential importance resampling based Particle filters are used where the filtering distributions are multi-nodal or consist of discrete state components since under these circumstances the Bayesian approximations do not always work well.


PLoS ONE ◽  
2013 ◽  
Vol 8 (10) ◽  
pp. e77115 ◽  
Author(s):  
Martin Loynaz Prieto ◽  
Ömer Oralkan ◽  
Butrus T. Khuri-Yakub ◽  
Merritt C. Maduke

2011 ◽  
Vol 8 (64) ◽  
pp. 1521-1549 ◽  
Author(s):  
Peter N. T. Wells ◽  
Hai-Dong Liang

After X-radiography, ultrasound is now the most common of all the medical imaging technologies. For millennia, manual palpation has been used to assist in diagnosis, but it is subjective and restricted to larger and more superficial structures. Following an introduction to the subject of elasticity, the elasticity of biological soft tissues is discussed and published data are presented. The basic physical principles of pulse-echo and Doppler ultrasonic techniques are explained. The history of ultrasonic imaging of soft tissue strain and elasticity is summarized, together with a brief critique of previously published reviews. The relevant techniques—low-frequency vibration, step, freehand and physiological displacement, and radiation force (displacement, impulse, shear wave and acoustic emission)—are described. Tissue-mimicking materials are indispensible for the assessment of these techniques and their characteristics are reported. Emerging clinical applications in breast disease, cardiology, dermatology, gastroenterology, gynaecology, minimally invasive surgery, musculoskeletal studies, radiotherapy, tissue engineering, urology and vascular disease are critically discussed. It is concluded that ultrasonic imaging of soft tissue strain and elasticity is now sufficiently well developed to have clinical utility. The potential for further research is examined and it is anticipated that the technology will become a powerful mainstream investigative tool.


2011 ◽  
Vol 130 (3) ◽  
pp. 1133-1141 ◽  
Author(s):  
Matthew W. Urban ◽  
Ivan Z. Nenadic ◽  
Scott A. Mitchell ◽  
Shigao Chen ◽  
James F. Greenleaf

2011 ◽  
Vol 215 ◽  
pp. 259-262 ◽  
Author(s):  
Z.W. Wang ◽  
G.Q. Pan ◽  
Dong Hui Wen

This keynote paper aims at introducing applications of ultrasonic radiation force in industry. The chosen focus is to understand how to use it. Since the phenomenon of acoustic levitation can reflect the exciting of ultrasonic radiation force directly. The paper starts with an analysis on the tungsten ball floating on a sound field and ultrasonic micro-manipulation study in micro Electronic Mechanical System (MEMS). And ultrasound has been successfully used to degrade wastewater as its cavitation. At the same time, different kinds of micro-ultrasonic machining were used to show how exciting machining and ultrasonic radiation combined. A view from the authors and the final Conclusions show future applications of ultrasonic radiation force.


1996 ◽  
Vol 22 (6) ◽  
pp. 523-527 ◽  
Author(s):  
Sabaratnam Arulkumaran ◽  
David G. Talbert ◽  
Margareta Nyman ◽  
Magnus Westgren ◽  
Hsu Tar Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document