scholarly journals Tracking of pendulum using particle filter with residual resampling

2018 ◽  
Vol 7 (2.7) ◽  
pp. 12
Author(s):  
Penumarty Hiranmayi ◽  
Kola Sai Gowtham ◽  
S Koteswara Rao ◽  
V Gopi Tilak

The phenomenon of simple harmonic motion is more vigilantly explained using a simple pendulum. The angular motion of a pendulum is linear in nature. But the analysis of the motion along the horizontal direction is non-linear. To estimate this, several algorithms like the Kalman filter, Extended Kalman Filter etc. are adopted. Here in this paper, Particle filter is chosen which is a method to form Monte Carlo approximations to the solutions of Bayesian filtering equations. Sequential importance resampling based Particle filters are used where the filtering distributions are multi-nodal or consist of discrete state components since under these circumstances the Bayesian approximations do not always work well.

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2139
Author(s):  
Xiuqiong Chen ◽  
Jiayi Kang ◽  
Mina Teicher ◽  
Stephen S.-T. Yau

Nonlinear filtering is of great significance in industries. In this work, we develop a new linear regression Kalman filter for discrete nonlinear filtering problems. Under the framework of linear regression Kalman filter, the key step is minimizing the Kullback–Leibler divergence between standard normal distribution and its Dirac mixture approximation formed by symmetric samples so that we can obtain a set of samples which can capture the information of reference density. The samples representing the conditional densities evolve in a deterministic way, and therefore we need less samples compared with particle filter, as there is less variance in our method. The numerical results show that the new algorithm is more efficient compared with the widely used extended Kalman filter, unscented Kalman filter and particle filter.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Fenggang Wang ◽  
Xianzhang Ling ◽  
Xun Xu ◽  
Feng Zhang

For the response acquisition of the structure section measuring points, the method of identifying the structural stiffness parameters is developed by using the extended Kalman filter. The state equation of structural system parameter is a nonlinear equation. Dispersing the structural dynamic equation by using Newmark-βmethod, the state transition matrix of discrete state equation is deduced and the solution of discrete state equation is simplified. The numerical simulation shows that the error of structural recognition doesnot exceed 5% when the noise level is 3%. It meets the requirements of the error limit of the engineering structure, which indicates that the derivation described in this paper has the robustness for the structural stiffness recognition. Shear structure parameter identification examples illustrate its applicability, and the method can also be used to identify physical parameters of large structure.


2021 ◽  
Vol 18 (181) ◽  
pp. 20210331
Author(s):  
Tamara Kurdyaeva ◽  
Andreas Milias-Argeitis

Differential equation models of biochemical networks are frequently associated with a large degree of uncertainty in parameters and/or initial conditions. However, estimating the impact of this uncertainty on model predictions via Monte Carlo simulation is computationally demanding. A more efficient approach could be to track a system of low-order statistical moments of the state. Unfortunately, when the underlying model is nonlinear, the system of moment equations is infinite-dimensional and cannot be solved without a moment closure approximation which may introduce bias in the moment dynamics. Here, we present a new method to study the time evolution of the desired moments for nonlinear systems with polynomial rate laws. Our approach is based on solving a system of low-order moment equations by substituting the higher-order moments with Monte Carlo-based estimates from a small number of simulations, and using an extended Kalman filter to counteract Monte Carlo noise. Our algorithm provides more accurate and robust results compared to traditional Monte Carlo and moment closure techniques, and we expect that it will be widely useful for the quantification of uncertainty in biochemical model predictions.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Inam Ullah ◽  
Xin Su ◽  
Jinxiu Zhu ◽  
Xuewu Zhang ◽  
Dongmin Choi ◽  
...  

Mobile robot localization has attracted substantial consideration from the scientists during the last two decades. Mobile robot localization is the basics of successful navigation in a mobile network. Localization plays a key role to attain a high accuracy in mobile robot localization and robustness in vehicular localization. For this purpose, a mobile robot localization technique is evaluated to accomplish a high accuracy. This paper provides the performance evaluation of three localization techniques named Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), and Particle Filter (PF). In this work, three localization techniques are proposed. The performance of these three localization techniques is evaluated and analyzed while considering various aspects of localization. These aspects include localization coverage, time consumption, and velocity. The abovementioned localization techniques present a good accuracy and sound performance compared to other techniques.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Mao Su ◽  
Lei Liu ◽  
Yongji Wang

An integrated guidance integrated estimation/guidance law is designed for exoatmospheric interceptors equipped with divert thrusters and optical seekers to intercept maneuvering targets. This paper considers an angles-only guidance problem for exoatmospheric maneuvering targets. A bounded differential game-based guidance law is derived against maneuvering targets using zero-effort-miss (ZEM). Estimators based the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are designed to estimate LOS rates that are contaminated by noise and target maneuver. Furthermore, to improve the observability of the range, an observability enhancement differential game guidance law is derived. The guidance law and the estimator are integrated together in the guidance loop. The proposed integrated estimation/guidance law has been tested in several three-dimensional nonlinear interception scenarios. Numerical simulations on a set of Monte-Carlo simulations prove the validity and superiority of the proposed guidance law in hit-to-kill interception.


Sign in / Sign up

Export Citation Format

Share Document