Cross-Correlation Signal Processing for Axion and WISP Dark Matter Searches

Author(s):  
Ben T. Mcallister ◽  
Stephen R. Parker ◽  
Eugene N. Ivanov ◽  
Michael E. Tobar
2012 ◽  
Vol 8 (S295) ◽  
pp. 105-108
Author(s):  
William G. Hartley ◽  
Omar Almaini ◽  
Alice Mortlock ◽  
Chris Conselice ◽  

AbstractWe use the UKIDSS Ultra-Deep Survey, the deepest degree-scale near-infrared survey to date, to investigate the clustering of star-forming and passive galaxies to z ~ 3.5. Our new measurements include the first determination of the clustering for passive galaxies at z > 2, which we achieve using a cross-correlation technique. We find that passive galaxies are the most strongly clustered, typically hosted by massive dark matter halos with Mhalo > 1013 M⊙ irrespective of redshift or stellar mass. Our findings are consistent with models in which a critical halo mass determines the transition from star-forming to passive galaxies.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2811 ◽  
Author(s):  
Guobin Yang ◽  
Peng Duan ◽  
Chunhua Jiang ◽  
Tongxin Liu ◽  
Ting Lan ◽  
...  

This paper illustrates the processes carried out for the application of biphase complete complementary code (CCC) for ionospheric sounding to address the coherent interference problem in multi-station ionospheric sounding. An algorithm to generate the biphase CCC is described, and the detailed process of waveform construction and signal processing is presented. Characteristics of the autocorrelation and cross-correlation are analyzed through simulations, and the technical feasibility of the application of CCC is explored. Experiments of ionospheric sounding with the CCC are also implemented to verify performance. Results demonstrate that the CCC performs well in multi-station ionospheric sounding, and is capable of eliminating the coherent interference in the network of ionosondes, compared to the conventional complementary code.


2014 ◽  
Vol 11 (S308) ◽  
pp. 530-537
Author(s):  
Nelson D. Padilla ◽  
Dante Paz ◽  
Marcelo Lares ◽  
Laura Ceccarelli ◽  
Diego Garcí a Lambas ◽  
...  

AbstractCosmic voids are becoming key players in testing the physics of our Universe. Here we concentrate on the abundances and the dynamics of voids as these are among the best candidates to provide information on cosmological parameters. Cai, Padilla & Li (2014) use the abundance of voids to tell apart Hu & Sawicki f(R) models from General Relativity. An interesting result is that even though, as expected, voids in the dark matter field are emptier in f(R) gravity due to the fifth force expelling away from the void centres, this result is reversed when haloes are used to find voids. The abundance of voids in this case becomes even lower in f(R) compared to GR for large voids. Still, the differences are significant and this provides a way to tell apart these models. The velocity field differences between f(R) and GR, on the other hand, are the same for halo voids and for dark matter voids. Paz et al. (2013), concentrate on the velocity profiles around voids. First they show the necessity of four parameters to describe the density profiles around voids given two distinct void populations, voids-in-voids and voids-in-clouds. This profile is used to predict peculiar velocities around voids, and the combination of the latter with void density profiles allows the construction of model void-galaxy cross-correlation functions with redshift space distortions. When these models are tuned to fit the measured correlation functions for voids and galaxies in the Sloan Digital Sky Survey, small voids are found to be of the void-in-cloud type, whereas larger ones are consistent with being void-in-void. This is a novel result that is obtained directly from redshift space data around voids. These profiles can be used to remove systematics on void-galaxy Alcock-Pacinsky tests coming from redshift-space distortions.


Sign in / Sign up

Export Citation Format

Share Document