Multi-Invariance ESPRIT-Based Blind DOA Estimation for MC-CDMA With an Antenna Array

2009 ◽  
Vol 58 (8) ◽  
pp. 4686-4690 ◽  
Author(s):  
Xiaofei Zhang ◽  
Xin Gao ◽  
Dazhuan Xu
Keyword(s):  
Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5164
Author(s):  
Jacob Compaleo ◽  
Inder J. Gupta

Recently, we proposed a Spectral Domain Sparse Representation (SDSR) approach for the direction-of-arrival estimation of signals incident to an antenna array. In the approach, sparse representation is applied to the conventional Bartlett spectra obtained from snapshots of the signals received by the antenna array to increase the direction-of-arrival (DOA) estimation resolution and accuracy. The conventional Bartlett spectra has limited dynamic range, meaning that one may not be able to identify the presence of weak signals in the presence of strong signals. This is because, in the conventional Bartlett spectra, uniform weighting (window) is applied to signals received by various antenna elements. Apodization can be used in the generation of Bartlett spectra to increase the dynamic range of the spectra. In Apodization, more than one window function is used to generate different portions of the spectra. In this paper, we extend the SDSR approach to include Bartlett spectra obtained with Apodization and to evaluate the performance of the extended SDSR approach. We compare its performance with a two-step SDSR approach and with an approach where Bartlett spectra is obtained using a low sidelobe window function. We show that an Apodization Bartlett-based SDSR approach leads to better performance with just single-step processing.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Wenxing Li ◽  
Xiaojun Mao ◽  
Wenhua Yu ◽  
Chongyi Yue

The array interpolation technology that is used to establish a virtual array from a real antenna array is widely used in direction finding. The traditional interpolation transformation technology causes significant bias in the directional-of-arrival (DOA) estimation due to its transform errors. In this paper, we proposed a modified interpolation method that significantly reduces bias in the DOA estimation of a virtual antenna array and improves the resolution capability. Using the projection concept, this paper projects the transformation matrix into the real array data covariance matrix; the operation not only enhances the signal subspace but also improves the orthogonality between the signal and noise subspace. Numerical results demonstrate the effectiveness of the proposed method. The proposed method can achieve better DOA estimation accuracy of virtual arrays and has a high resolution performance compared to the traditional interpolation method.


2020 ◽  
Vol 15 (2) ◽  
Author(s):  
Luong Tran ◽  
Ha Nguyen ◽  
Vesely ◽  
Dvorak ◽  
Minh Duong ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Oluwole John Famoriji ◽  
Thokozani Shongwe

To obtain an antenna array with isotropic radiation, spherical antenna array (SAA) is the right array configuration. The challenges of locating signals transmitted within the proximity of antenna array have been investigated considerably in the literature. However, near-field (NF) source localization of signals has hitherto not been investigated effectively using SAA in the presence of mutual coupling (MC). MC is another critical problem in antenna arrays. This paper presents an NF range and direction-of-arrival (DoA) estimation technique via the direction-independent and signal invariant spherical harmonics (SH) characteristics in the presence of mutual coupling. The energy of electromagnetic (EM) signal on the surface of SAA is captured successfully using a proposed pressure interpolation approach. The DoA estimation within the NF region is then calculated via the distribution of pressure. The direction-independent and signal invariant characteristics, which are SH features, are obtained using the DoA estimates in the NF region. We equally proposed a learning scheme that uses the source activity detection and convolutional neural network (CNN) to estimate the range of the NF source via the direction-independent and signal invariant features. Considering the MC problem and using the DoA estimates, an accurate spectrum peak in the multipath situation in conjunction with MC and a sharper spectrum peak from a unique MC structure and smoothing algorithms are obtained. For ground truth performance evaluation of the SH features within the context of NF localization, a numerical experiment is conducted and measured data were used for analysis to incorporate the MC and consequently computed the root mean square error (RMSE) of the source range and NF DoA estimate. The results obtained from numerical experiments and measured data indicate the validity and effectiveness of the proposed approach. In addition, these results are motivating enough for the deployment of the proposed method in practical applications.


Sign in / Sign up

Export Citation Format

Share Document