resolution capability
Recently Published Documents


TOTAL DOCUMENTS

140
(FIVE YEARS 18)

H-INDEX

18
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Thomas Nance ◽  
Thomas L. Frey ◽  
Michael Gibbs ◽  
Kevin Whiteside

Author(s):  
Hideto Onishi ◽  
Miyake Mikio ◽  
Hajime SHIRAI

Abstract Alkaline treatment of the photoresist under ultrasonic irradiation has been investigated to improve the resolution capability of resist patterns with higher throughput. The selectively dissolved phenol resin for the combination of the alkaline treatment with ultrasonic irradiation was increased by 2.3 times compared to the solely alkaline treatment. The sensitizing effect of naphthoquinone diazide (sensitizer) based on phenol was increased to 0.46 against dip treatment of 0.31. As a result, resist sensitivity was increased to 26% and the resolution capability was drastically improved. Consequently, the 0.5 μm line and space resist patterns were resolved completely with fine profile by using the photoresist with a 0.7 μm resolution limit together with g-line exposure machine with a 0.6 μm resolution limit. As a consequence, a high throughput of 25 wafers/min was achieved, which was more than 25 times higher than that of electron beam (EB) lithography.


Photonics ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 525
Author(s):  
Zhi-Hao Bian ◽  
Hui Wu

Quantum entanglement is one of the essential resources in quantum information processing. It is of importance to verify whether a quantum state is entangled. At present, a typical quantum certification focused on the classical correlations has attracted widespread attention. Here, we experimentally investigate the relation between quantum entanglement and the classical complementary correlations based on the mutual information, Pearson correlation coefficient and mutual predictability of two-qubit states. Our experimental results show the classical correlations for complementary properties have strong resolution capability to verify entanglement for two qubit pure states and Werner states. We find that the resolution capability has great performance improvement when the eigenstates of the measurement observables constitute a complete set of mutually unbiased bases. For Werner states in particular, the classical complementary correlations based on the Pearson correlation coefficient and mutual predictability can provide the ultimate bounds to certify entanglement.


2021 ◽  
Vol 13 (17) ◽  
pp. 3456
Author(s):  
Bachir Tchana Tankeu ◽  
Vincent Baltazart ◽  
Yide Wang ◽  
David Guilbert

In this paper, principal-singular-vector utilization for modal analysis (PUMA) was adapted to perform time delay estimation on ground-penetrating radar (GPR) data by taking into account the shape of the transmitted GPR signal. The super-resolution capability of PUMA was used to separate overlapping backscattered echoes from a layered pavement structure with some embedded debondings. The well-known root-MUSIC algorithm was selected as a benchmark for performance assessment. The simulation results showed that the proposed PUMA performs very well, especially in the case where the sources are totally coherent, and it requires much less computational time than the root-MUSIC algorithm.


2021 ◽  
pp. 23-27
Author(s):  

The application of classical and parametric spectral analyzes in monitoring the condition of industrial equipment and, in particular, metal-cutting machines is considered. An analysis of the effects associated with the preparation of the initial data and the algorithm for their processing, which impose significant restrictions on the use of classical spectral analysis, is presented. Comparison of parametric methods of spectral analysis based on autoregressive methods is given. Keywords: spectral analysis, diagnostics, resolution capability, spectral density, Prony's exponential analysis. [email protected]


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1550
Author(s):  
Dominic Greiffenberg ◽  
Marie Andrä ◽  
Rebecca Barten ◽  
Anna Bergamaschi ◽  
Martin Brückner ◽  
...  

Chromium compensated GaAs or GaAs:Cr sensors provided by the Tomsk State University (Russia) were characterized using the low noise, charge integrating readout chip JUNGFRAU with a pixel pitch of 75 × 75 µm2 regarding its application as an X-ray detector at synchrotrons sources or FELs. Sensor properties such as dark current, resistivity, noise performance, spectral resolution capability and charge transport properties were measured and compared with results from a previous batch of GaAs:Cr sensors which were produced from wafers obtained from a different supplier. The properties of the sample from the later batch of sensors from 2017 show a resistivity of 1.69 × 109 Ω/cm, which is 47% higher compared to the previous batch from 2016. Moreover, its noise performance is 14% lower with a value of (101.65 ± 0.04) e− ENC and the resolution of a monochromatic 60 keV photo peak is significantly improved by 38% to a FWHM of 4.3%. Likely, this is due to improvements in charge collection, lower noise, and more homogeneous effective pixel size. In a previous work, a hole lifetime of 1.4 ns for GaAs:Cr sensors was determined for the sensors of the 2016 sensor batch, explaining the so-called “crater effect” which describes the occurrence of negative signals in the pixels around a pixel with a photon hit due to the missing hole contribution to the overall signal causing an incomplete signal induction. In this publication, the “crater effect” is further elaborated by measuring GaAs:Cr sensors using the sensors from 2017. The hole lifetime of these sensors was 2.5 ns. A focused photon beam was used to illuminate well defined positions along the pixels in order to corroborate the findings from the previous work and to further characterize the consequences of the “crater effect” on the detector operation.


Author(s):  
I. V. Domanskyi ◽  
V. O. Vasenko

Purpose. The purpose of the article is system analysis of the state of electric traction networks, as well as methods of complex diagnostics of the contact network from a moving laboratory car to increase the resolution capability of the systems for monitoring the quality of interaction between the contact network and current collectors. Methodology. The problem was solved by theoretical analysis and experimental studies of the current collection parameters, a generalized model of the device for monitoring the wear of the overhead wire and its functional units in order to determine the factors affecting the control error, as well as the development of methods that reduce the specified error. The apparatus of factor analysis, the theory of optoelectronic circuits and methods of statistical information processing were used. Findings. Innovative approaches and qualitatively new diagnostic tools are proposed that allow expanding the functionality of the laboratory cars for testing the contact network for power supply enterprises of electrified railways, industrial and urban electric transport. Hardware and software have been developed to improve the system for measuring the parameters of the overhead wire and other components of the contact network. Originality. The theoretical maximum permissible, from the point of view of the contact network operation, error in monitoring the wear of the overhead wire and other components of the electric traction network has been determined. A method for increasing the resolution capability of a stereo television system and an adaptive lighting system is proposed. It consists in preliminary image transformation and expansion of the dynamic range of image measurement. The ways of introducing a high-speed real-time compression algorithm and using LED backlighting are proposed. Practical value. The quality of the contact network diagnostics in difficult conditions for video surveillance has been improved. A camera with a built-in image compression module without losing its performance is proposed, which allows capturing and transmitting full-frame images to a computing complex for the application of new diagnostic algorithms for contact network components. The modernized video measuring systems for the wear of the overhead wire for monitoring the grounding of the contact network supports are proposed, as well as elements of track facilities located in the visibility zone of specialized cameras, which ensure the operability of the systems at any time of the day at speeds up to 160 km/h. An air curtain subsystem was implemented to protect the cameras.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1241
Author(s):  
Yangliang Wan ◽  
Xingdong Liang ◽  
Xiangxi Bu ◽  
Yunlong Liu

Using millimeter-wave radar to scan and detect small foreign object debris (FOD) on an airport runway surface is a popular solution in civil aviation safety. Since it is impossible to completely eliminate the interference reflections arising from strongly scattering targets or non-homogeneous clutter after clutter cancellation processing, the consequent high false alarm probability has become a key problem to be solved. In this article, we propose a new FOD detection method for interference suppression and false alarm reduction based on an iterative adaptive approach (IAA) algorithm, which is a non-parametric, weighted least squares-based iterative adaptive processing approach that can provide super-resolution capability. Specifically, we first obtain coarse FOD target information by data preprocessing in a conventional detection method. Then, a refined data processing step is conducted based on the IAA algorithm in the azimuth direction. Finally, multiple pieces of information from the two steps above are used to comprehensively distinguish false alarms by fusion processing; thus, we can acquire accurate FOD target information. Real airport data measured by a 93 GHz radar are used to validate the proposed method. Experimental results of the test scene, which include golf balls with a diameter of 43 mm, were placed about 300 m away from radar, which show that the proposed method can effectively reduce the number of false alarms when compared with a traditional FOD detection method. Although metal balls with a diameter of 50 mm were placed about 660 m away from radar, they also can obtain up to 2.2 times azimuth super-resolution capability.


2021 ◽  
Vol 13 (4) ◽  
pp. 615
Author(s):  
Sukant Chaudhry ◽  
David Salido-Monzú ◽  
Andreas Wieser

The minimum size of objects or geometrical features that can be distinguished within a laser scanning point cloud is called the resolution capability (RC). Herein, we develop a simple analytical expression for predicting the RC in angular direction for phase-based laser scanners. We start from a numerical approximation of the mixed-pixel bias which occurs when the laser beam simultaneously hits surfaces at grossly different distances. In correspondence with previous literature, we view the RC as the minimum angular distance between points on the foreground and points on the background which are not (severely) affected by a mixed-pixel bias. We use an elliptical Gaussian beam for quantifying the effect. We show that the surface reflectivities and the distance step between foreground and background have generally little impact. Subsequently, we derive an approximation of the RC and extend it to include the selected scanning resolution, that is, angular increment. We verify our model by comparison to the resolution capabilities empirically determined by others. Our model requires parameters that can be taken from the data sheet of the scanner or approximated using a simple experiment. We describe this experiment herein and provide the required software on GitHub. Our approach is thus easily accessible, enables the prediction of the resolution capability with little effort and supports assessing the suitability of a specific scanner or of specific scanning parameters for a given application.


Sign in / Sign up

Export Citation Format

Share Document