scholarly journals Optimal Information-Theoretic Wireless Location Verification

2014 ◽  
Vol 63 (7) ◽  
pp. 3410-3422 ◽  
Author(s):  
Shihao Yan ◽  
Robert Malaney ◽  
Ido Nevat ◽  
Gareth W. Peters
2021 ◽  
Vol 118 (46) ◽  
pp. e2109011118
Author(s):  
Marianne Bauer ◽  
Mariela D. Petkova ◽  
Thomas Gregor ◽  
Eric F. Wieschaus ◽  
William Bialek

In the regulation of gene expression, information of relevance to the organism is represented by the concentrations of transcription factor molecules. To extract this information the cell must effectively “measure” these concentrations, but there are physical limits to the precision of these measurements. We use the gap gene network in the early fly embryo as an example of the tradeoff between the precision of concentration measurements and the transmission of relevant information. For thresholded measurements we find that lower thresholds are more important, and fine tuning is not required for near-optimal information transmission. We then consider general sensors, constrained only by a limit on their information capacity, and find that thresholded sensors can approach true information theoretic optima. The information theoretic approach allows us to identify the optimal sensor for the entire gap gene network and to argue that the physical limitations of sensing necessitate the observed multiplicity of enhancer elements, with sensitivities to combinations rather than single transcription factors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jesús Malo

Abstract How much visual information about the retinal images can be extracted from the different layers of the visual pathway? This question depends on the complexity of the visual input, the set of transforms applied to this multivariate input, and the noise of the sensors in the considered layer. Separate subsystems (e.g. opponent channels, spatial filters, nonlinearities of the texture sensors) have been suggested to be organized for optimal information transmission. However, the efficiency of these different layers has not been measured when they operate together on colorimetrically calibrated natural images and using multivariate information-theoretic units over the joint spatio-chromatic array of responses. In this work, we present a statistical tool to address this question in an appropriate (multivariate) way. Specifically, we propose an empirical estimate of the information transmitted by the system based on a recent Gaussianization technique. The total correlation measured using the proposed estimator is consistent with predictions based on the analytical Jacobian of a standard spatio-chromatic model of the retina–cortex pathway. If the noise at certain representation is proportional to the dynamic range of the response, and one assumes sensors of equivalent noise level, then transmitted information shows the following trends: (1) progressively deeper representations are better in terms of the amount of captured information, (2) the transmitted information up to the cortical representation follows the probability of natural scenes over the chromatic and achromatic dimensions of the stimulus space, (3) the contribution of spatial transforms to capture visual information is substantially greater than the contribution of chromatic transforms, and (4) nonlinearities of the responses contribute substantially to the transmitted information but less than the linear transforms.


Sign in / Sign up

Export Citation Format

Share Document