Hybrid Random Access and Data Transmission Protocol for Machine-to-Machine Communications in Cellular Networks

2015 ◽  
Vol 14 (1) ◽  
pp. 33-46 ◽  
Author(s):  
Dimas Tribudi Wiriaatmadja ◽  
Kae Won Choi
2017 ◽  
Vol 66 (7) ◽  
pp. 6399-6414 ◽  
Author(s):  
Meng Li ◽  
F. Richard Yu ◽  
Pengbo Si ◽  
Enchang Sun ◽  
Yanhua Zhang ◽  
...  

Author(s):  
O. S. Galinina ◽  
S. D. Andreev ◽  
A. M. Tyurlikov

Introduction: Machine-to-machine communication assumes data transmission from various wireless devices and attracts attention of cellular operators. In this regard, it is crucial to recognize and control overload situations when a large number of such devices access the network over a short time interval.Purpose:Analysis of the radio network overload at the initial network entry stage in a machine-to-machine communication system.Results: A system is considered that features multiple smart meters, which may report alarms and autonomously collect energy consumption information. An analytical approach is proposed to study the operation of a large number of devices in such a system as well as model the settings of the random-access protocol in a cellular network and overload control mechanisms with respect to the access success probability, network access latency, and device power consumption. A comparison between the obtained analytical results and simulation data is also offered. 


2021 ◽  
Vol 13 (15) ◽  
pp. 8120
Author(s):  
Shaheer Ansari ◽  
Afida Ayob ◽  
Molla S. Hossain Lipu ◽  
Mohamad Hanif Md Saad ◽  
Aini Hussain

Solar photovoltaic (PV) is one of the prominent sustainable energy sources which shares a greater percentage of the energy generated from renewable resources. As the need for solar energy has risen tremendously in the last few decades, monitoring technologies have received considerable attention in relation to performance enhancement. Recently, the solar PV monitoring system has been integrated with a wireless platform that comprises data acquisition from various sensors and nodes through wireless data transmission. However, several issues could affect the performance of solar PV monitoring, such as large data management, signal interference, long-range data transmission, and security. Therefore, this paper comprehensively reviews the progress of several solar PV-based monitoring technologies focusing on various data processing modules and data transmission protocols. Each module and transmission protocol-based monitoring technology is investigated with regard to type, design, implementations, specifications, and limitations. The critical discussion and analysis are carried out with respect to configurations, parameters monitored, software, platform, achievements, and suggestions. Moreover, various key issues and challenges are explored to identify the existing research gaps. Finally, this review delivers selective proposals for future research works. All the highlighted insights of this review will hopefully lead to increased efforts toward the enhancement of the monitoring technologies in future sustainable solar PV applications.


Author(s):  
Takumi Saito ◽  
Shigenari Nakamura ◽  
Tomoya Enokido ◽  
Makoto Takizawa

Sign in / Sign up

Export Citation Format

Share Document