scholarly journals Achievable Rate of Spectrum Sharing Cognitive Radio Multiple-Antenna Channels

2015 ◽  
Vol 14 (9) ◽  
pp. 4847-4856 ◽  
Author(s):  
Lokman Sboui ◽  
Hakim Ghazzai ◽  
Zouheir Rezki ◽  
Mohamed-Slim Alouini
Author(s):  
Lokesh Chouhan ◽  
Aditya Trivedi

In the last few decades, the Cognitive Radio (CR) paradigm has received huge interest from industry and academia. CR is a promising approach to solve the spectrum scarcity problem. Moreover, various technical issues still need to be addressed for successful deployment of CRNs, especially in the MAC layer. In this chapter, a comprehensive survey of the Medium Access Control (MAC) approaches for CRN is presented. These MAC technologies under analysis include spectrum sharing, multiple antenna techniques, cooperation, relays, distributed systems, network convergence, mobility, and network self-optimization. Moreover, various classifications of MAC protocols are explained in this chapter on the basis of some parameters, like signaling technique, type of architecture, sharing mode, access mode, and common control channel. Additionally, some case studies of 802.11, 802.22, and Mobile Virtual Node Operator (MVNO) are also considered for the case study. The main objective of this chapter is to assist CR designers and the CR application engineers to consider the MAC layer issues and factors in the early development stage of CRNs.


Electronics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 602
Author(s):  
Monisha Devi ◽  
Nityananda Sarma ◽  
Sanjib K. Deka

Cognitive radio (CR) has evolved as a novel technology for overcoming the spectrum-scarcity problem in wireless communication networks. With its opportunistic behaviour for improving the spectrum-usage efficiency, CR enables the desired secondary users (SUs) to dynamically utilize the idle spectrum owned by primary users. On sensing the spectrum to identify the idle frequency bands, proper spectrum-allocation mechanisms need to be designed to provide an effectual use of the radio resource. In this paper, we propose a single-sided sealed-bid sequential-bidding-based auction framework that extends the channel-reuse property in a spectrum-allocation mechanism to efficiently redistribute the unused channels. Existing auction designs primarily aim at maximizing the auctioneer’s revenue, due to which certain CR constraints remain excluded in their models. We address two such constraints, viz. the dynamics in spectrum opportunities and varying availability time of vacant channels, and formulate an allocation problem that maximizes the utilization of the radio spectrum. The auctioneer strategises winner determination based on bids collected from SUs and sequentially leases the unused channels, while restricting the channel assignment to a single-channel-multi-user allocation. To model the spectrum-sharing mechanism, we initially developed a group-formation algorithm that enables the members of a group to access a common channel. Furthermore, the spectrum-allocation and pricing algorithms are operated under constrained circumstances, which guarantees truthfulness in the model. An analysis of the simulation results and comparison with existing auction models revealed the effectiveness of the proposed approach in assigning the unexploited spectrum.


Sign in / Sign up

Export Citation Format

Share Document