Optimal Measurement of Signal Data Parameters of Requesting Radar Systems

Author(s):  
Iryna Svyd ◽  
Ivan Obod ◽  
Oleksandr Maltsev ◽  
Volodymyr Andrusevich ◽  
Borys Bakumenko ◽  
...  
2020 ◽  
Vol 79 (10) ◽  
pp. 829-845
Author(s):  
V. I. Lutsenko ◽  
I. V. Lutsenko ◽  
A. V. Sobolyak ◽  
I. V. Popov ◽  
N. X. Ahn ◽  
...  
Keyword(s):  

Author(s):  
Ruslan V. Aginey ◽  
◽  
Rustem R. Islamov ◽  
Alexey A. Firstov ◽  
Elmira A. Mamedova ◽  
...  

Existing methods for estimating the bending stresses of buried pipeline section based on the survey data for the depth of the axis of the pipeline from the ground surface are characterized by a large error between the real values of the bending stress and the values of the bending stress obtained from the calculation results based on the survey data. The purpose of this study is to improve the methodology for calculating the bending stresses of buried pipeline section based on the results of determining the depth of the axis of the pipeline from the ground surface, taking into account the design features of the pipeline and the used search equipment. Mathematical models are proposed that allow for the set value of the maximum error in determining bending stresses for a particular pipeline to choose the optimal measurement step before the survey, which will allow to reduce the error. Explanations are given on the choice of the maximum step of the study based on the strength characteristics of the pipeline. A calculation is provided that confirms the adequacy of the developed mathematical models and the possibility of their application in practice.


2017 ◽  
Author(s):  
Sujeet Patole ◽  
Murat Torlak ◽  
Dan Wang ◽  
Murtaza Ali

Automotive radars, along with other sensors such as lidar, (which stands for “light detection and ranging”), ultrasound, and cameras, form the backbone of self-driving cars and advanced driver assistant systems (ADASs). These technological advancements are enabled by extremely complex systems with a long signal processing path from radars/sensors to the controller. Automotive radar systems are responsible for the detection of objects and obstacles, their position, and speed relative to the vehicle. The development of signal processing techniques along with progress in the millimeter- wave (mm-wave) semiconductor technology plays a key role in automotive radar systems. Various signal processing techniques have been developed to provide better resolution and estimation performance in all measurement dimensions: range, azimuth-elevation angles, and velocity of the targets surrounding the vehicles. This article summarizes various aspects of automotive radar signal processing techniques, including waveform design, possible radar architectures, estimation algorithms, implementation complexity-resolution trade-off, and adaptive processing for complex environments, as well as unique problems associated with automotive radars such as pedestrian detection. We believe that this review article will combine the several contributions scattered in the literature to serve as a primary starting point to new researchers and to give a bird’s-eye view to the existing research community.


2014 ◽  
Vol 35 (4) ◽  
pp. 901-907
Author(s):  
Jun-kun Yan ◽  
Feng-zhou Dai ◽  
Tong Qin ◽  
Hong-wei Liu ◽  
Zheng Bao

1997 ◽  
Author(s):  
Jaime R. Roman ◽  
Dennis W. Davis

Sign in / Sign up

Export Citation Format

Share Document